57 research outputs found

    A new security architecture for SIP based P2P computer networks

    Get PDF
    Many applications are transferred from C/S (Client/Server) mode to P2P (Peer-to-Peer) mode such as VoIP (Voice over IP). This paper presents a new security architecture, i.e. a trustworthy authentication algorithm of peers, for Session Initialize Protocol (SIP) based P2P computer networks. A mechanism for node authentication using a cryptographic primitive called one-way accumulator is proposed to secure the P2P SIP computer networks. It leverages the distributed nature of P2P to allow for distributed resource discovery and rendezvous in a SIP network, thus eliminating (or at least reducing) the need for centralized servers. The distributed node authentication algorithm is established for the P2P SIP computer networks. The corresponding protocol has been implemented in our P2P SIP experiment platform successfully. The performance study has verified the proposed distributed node authentication algorithm for SIP based P2P computer networks

    A new security architecture for SIP-based P2P computer networks

    Get PDF
    Many applications are transferred from C/S (Client/Server) mode to P2P (Peer-to-Peer) mode such as VoIP (Voice over IP). This paper presents a new security architecture, i.e. a trustworthy authentication algorithm of peers, for Session Initialize Protocol (SIP) based P2P computer networks. A mechanism for node authentication using a cryptographic primitive called one-way accumulator is proposed to secure the P2P SIP computer networks. It leverages the distributed nature of P2P to allow for distributed resource discovery and rendezvous in a SIP network, thus eliminating (or at least reducing) the need for centralized servers. The distributed node authentication algorithm is established for the P2P SIP computer networks. The corresponding protocol has been implemented in our P2P SIP experiment platform successfully. The performance study has verified the proposed distributed node authentication algorithm for SIP based P2P computer networks

    Merkle Tree Ladder Mode: Reducing the Size Impact of NIST PQC Signature Algorithms in Practice

    Get PDF
    We introduce the Merkle Tree Ladder (MTL) mode of operation for signature schemes. MTL mode signs messages using an underlying signature scheme in such a way that the resulting signatures are condensable: a set of MTL mode signatures can be conveyed from a signer to a verifier in fewer bits than if the MTL mode signatures were sent individually. In MTL mode, the signer sends a shorter condensed signature for each message of interest and occasionally provides a longer reference value that helps the verifier process the condensed signatures. We show that in a practical scenario involving random access to an initial series of 10,000 signatures that expands gradually over time, MTL mode can reduce the size impact of the NIST PQC signature algorithms, which have signature sizes of 666 to 7856 bytes with example parameter sets, to a condensed signature size of 472 bytes per message. Even adding the overhead of the reference values, MTL mode signatures still reduce the overall signature size impact under a range of operational assumptions. Because MTL mode itself is quantum-safe, the mode can support long-term cryptographic resiliency in applications where signature size impact is a concern without limiting cryptographic diversity only to algorithms whose signatures are naturally short

    Bringing data minimization to digital wallets at scale with general-purpose zero-knowledge proofs

    Get PDF
    Today, digital identity management for individuals is either inconvenient and error-prone or creates undesirable lock-in effects and violates privacy and security expectations. These shortcomings inhibit the digital transformation in general and seem particularly concerning in the context of novel applications such as access control for decentralized autonomous organizations and identification in the Metaverse. Decentralized or self-sovereign identity (SSI) aims to offer a solution to this dilemma by empowering individuals to manage their digital identity through machine-verifiable attestations stored in a "digital wallet" application on their edge devices. However, when presented to a relying party, these attestations typically reveal more attributes than required and allow tracking end users' activities. Several academic works and practical solutions exist to reduce or avoid such excessive information disclosure, from simple selective disclosure to data-minimizing anonymous credentials based on zero-knowledge proofs (ZKPs). We first demonstrate that the SSI solutions that are currently built with anonymous credentials still lack essential features such as scalable revocation, certificate chaining, and integration with secure elements. We then argue that general-purpose ZKPs in the form of zk-SNARKs can appropriately address these pressing challenges. We describe our implementation and conduct performance tests on different edge devices to illustrate that the performance of zk-SNARK-based anonymous credentials is already practical. We also discuss further advantages that general-purpose ZKPs can easily provide for digital wallets, for instance, to create "designated verifier presentations" that facilitate new design options for digital identity infrastructures that previously were not accessible because of the threat of man-in-the-middle attacks

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence

    Physical Unclonability Framework for the Internet of Things

    Get PDF
    Ph. D. ThesisThe rise of the Internet of Things (IoT) creates a tendency to construct unified architectures with a great number of edge nodes and inherent security risks due to centralisation. At the same time, security and privacy defenders advocate for decentralised solutions which divide the control and the responsibility among the entirety of the network nodes. However, spreading secrets among several parties also expands the attack surface. This conflict is in part due to the difficulty in differentiating between instances of the same hardware, which leads to treating physically distinct devices as identical. Harnessing the uniqueness of each connected device and injecting it into security protocols can provide solutions to several common issues of the IoT. Secrets can be generated directly from this uniqueness without the need to manually embed them into devices, reducing both the risk of exposure and the cost of managing great numbers of devices. Uniqueness can then lead to the primitive of unclonability. Unclonability refers to ensuring the difficulty of producing an exact duplicate of an entity via observing and measuring the entity’s features and behaviour. Unclonability has been realised on a physical level via the use of Physical Unclonable Functions (PUFs). PUFs are constructions that extract the inherent unclonable features of objects and compound them into a usable form, often that of binary data. PUFs are also exceptionally useful in IoT applications since they are low-cost, easy to integrate into existing designs, and have the potential to replace expensive cryptographic operations. Thus, a great number of solutions have been developed to integrate PUFs in various security scenarios. However, methods to expand unclonability into a complete security framework have not been thoroughly studied. In this work, the foundations are set for the development of such a framework through the formulation of an unclonability stack, in the paradigm of the OSI reference model. The stack comprises layers propagating the primitive from the unclonable PUF ICs, to devices, network links and eventually unclonable systems. Those layers are introduced, and work towards the design of protocols and methods for several of the layers is presented. A collection of protocols based on one or more unclonable tokens or authority devices is proposed, to enable the secure introduction of network nodes into groups or neighbourhoods. The role of the authority devices is that of a consolidated, observable root of ownership, whose physical state can be verified. After their introduction, nodes are able to identify and interact with their peers, exchange keys and form relationships, without the need of continued interaction with the authority device. Building on this introduction scheme, methods for establishing and maintaining unclonable links between pairs of nodes are introduced. These pairwise links are essential for the construction of relationships among multiple network nodes, in a variety of topologies. Those topologies and the resulting relationships are formulated and discussed. While the framework does not depend on specific PUF hardware, SRAM PUFs are chosen as a case study since they are commonly used and based on components that are already present in the majority of IoT devices. In the context of SRAM PUFs and with a view to the proposed framework, practical issues affecting the adoption of PUFs in security protocols are discussed. Methods of improving the capabilities of SRAM PUFs are also proposed, based on experimental data.School of Engineering Newcastle Universit

    Format-Independent Authentication of Arbitrary Scalable Bit-Streams using One-Way Accumulators

    No full text

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference
    • …
    corecore