169 research outputs found

    A new class of codes for Boolean masking of cryptographic computations

    Full text link
    We introduce a new class of rate one-half binary codes: {\bf complementary information set codes.} A binary linear code of length 2n2n and dimension nn is called a complementary information set code (CIS code for short) if it has two disjoint information sets. This class of codes contains self-dual codes as a subclass. It is connected to graph correlation immune Boolean functions of use in the security of hardware implementations of cryptographic primitives. Such codes permit to improve the cost of masking cryptographic algorithms against side channel attacks. In this paper we investigate this new class of codes: we give optimal or best known CIS codes of length <132.<132. We derive general constructions based on cyclic codes and on double circulant codes. We derive a Varshamov-Gilbert bound for long CIS codes, and show that they can all be classified in small lengths ≤12\le 12 by the building up construction. Some nonlinear permutations are constructed by using Z4\Z_4-codes, based on the notion of dual distance of an unrestricted code.Comment: 19 pages. IEEE Trans. on Information Theory, to appea

    Construction of isodual codes from polycirculant matrices

    Full text link
    Double polycirculant codes are introduced here as a generalization of double circulant codes. When the matrix of the polyshift is a companion matrix of a trinomial, we show that such a code is isodual, hence formally self-dual. Numerical examples show that the codes constructed have optimal or quasi-optimal parameters amongst formally self-dual codes. Self-duality, the trivial case of isoduality, can only occur over \F_2 in the double circulant case. Building on an explicit infinite sequence of irreducible trinomials over \F_2, we show that binary double polycirculant codes are asymptotically good

    Directed Graph Representation of Half-Rate Additive Codes over GF(4)

    Get PDF
    We show that (n,2^n) additive codes over GF(4) can be represented as directed graphs. This generalizes earlier results on self-dual additive codes over GF(4), which correspond to undirected graphs. Graph representation reduces the complexity of code classification, and enables us to classify additive (n,2^n) codes over GF(4) of length up to 7. From this we also derive classifications of isodual and formally self-dual codes. We introduce new constructions of circulant and bordered circulant directed graph codes, and show that these codes will always be isodual. A computer search of all such codes of length up to 26 reveals that these constructions produce many codes of high minimum distance. In particular, we find new near-extremal formally self-dual codes of length 11 and 13, and isodual codes of length 24, 25, and 26 with better minimum distance than the best known self-dual codes.Comment: Presented at International Workshop on Coding and Cryptography (WCC 2009), 10-15 May 2009, Ullensvang, Norway. (14 pages, 2 figures

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Self-orthogonal codes over a non-unital ring and combinatorial matrices

    Full text link
    There is a local ring EE of order 4,4, without identity for the multiplication, defined by generators and relations as E=⟨a,b∣2a=2b=0, a2=a, b2=b, ab=a, ba=b⟩.E=\langle a,b \mid 2a=2b=0,\, a^2=a,\, b^2=b,\,ab=a,\, ba=b\rangle. We study a special construction of self-orthogonal codes over E,E, based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over E,E, and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over \F_4. The classical invariant theory bound for the weight enumerators of this class of codesimproves the known bound on the minimum distance of Type IV codes over E.E.Comment: 18 page

    On quadratic residue codes and hyperelliptic curves

    Full text link
    A long standing problem has been to develop "good" binary linear codes to be used for error-correction. This paper investigates in some detail an attack on this problem using a connection between quadratic residue codes and hyperelliptic curves. One question which coding theory is used to attack is: Does there exist a c<2 such that, for all sufficiently large pp and all subsets S of GF(p), we have |X_S(GF(p))| < cp?Comment: 18 pages, no figure
    • …
    corecore