6,934 research outputs found

    Optimal Dynamic Distributed MIS

    Full text link
    Finding a maximal independent set (MIS) in a graph is a cornerstone task in distributed computing. The local nature of an MIS allows for fast solutions in a static distributed setting, which are logarithmic in the number of nodes or in their degrees. The result trivially applies for the dynamic distributed model, in which edges or nodes may be inserted or deleted. In this paper, we take a different approach which exploits locality to the extreme, and show how to update an MIS in a dynamic distributed setting, either \emph{synchronous} or \emph{asynchronous}, with only \emph{a single adjustment} and in a single round, in expectation. These strong guarantees hold for the \emph{complete fully dynamic} setting: Insertions and deletions, of edges as well as nodes, gracefully and abruptly. This strongly separates the static and dynamic distributed models, as super-constant lower bounds exist for computing an MIS in the former. Our results are obtained by a novel analysis of the surprisingly simple solution of carefully simulating the greedy \emph{sequential} MIS algorithm with a random ordering of the nodes. As such, our algorithm has a direct application as a 33-approximation algorithm for correlation clustering. This adds to the important toolbox of distributed graph decompositions, which are widely used as crucial building blocks in distributed computing. Finally, our algorithm enjoys a useful \emph{history-independence} property, meaning the output is independent of the history of topology changes that constructed that graph. This means the output cannot be chosen, or even biased, by the adversary in case its goal is to prevent us from optimizing some objective function.Comment: 19 pages including appendix and reference

    On the Complexity of Case-Based Planning

    Full text link
    We analyze the computational complexity of problems related to case-based planning: planning when a plan for a similar instance is known, and planning from a library of plans. We prove that planning from a single case has the same complexity than generative planning (i.e., planning "from scratch"); using an extended definition of cases, complexity is reduced if the domain stored in the case is similar to the one to search plans for. Planning from a library of cases is shown to have the same complexity. In both cases, the complexity of planning remains, in the worst case, PSPACE-complete

    Time-Space Tradeoffs for the Memory Game

    Get PDF
    A single-player game of Memory is played with nn distinct pairs of cards, with the cards in each pair bearing identical pictures. The cards are laid face-down. A move consists of revealing two cards, chosen adaptively. If these cards match, i.e., they bear the same picture, they are removed from play; otherwise, they are turned back to face down. The object of the game is to clear all cards while minimizing the number of moves. Past works have thoroughly studied the expected number of moves required, assuming optimal play by a player has that has perfect memory. In this work, we study the Memory game in a space-bounded setting. We prove two time-space tradeoff lower bounds on algorithms (strategies for the player) that clear all cards in TT moves while using at most SS bits of memory. First, in a simple model where the pictures on the cards may only be compared for equality, we prove that ST=Ω(n2log⁥n)ST = \Omega(n^2 \log n). This is tight: it is easy to achieve ST=O(n2log⁥n)ST = O(n^2 \log n) essentially everywhere on this tradeoff curve. Second, in a more general model that allows arbitrary computations, we prove that ST2=Ω(n3)ST^2 = \Omega(n^3). We prove this latter tradeoff by modeling strategies as branching programs and extending a classic counting argument of Borodin and Cook with a novel probabilistic argument. We conjecture that the stronger tradeoff ST=Ω~(n2)ST = \widetilde{\Omega}(n^2) in fact holds even in this general model
    • 

    corecore