50 research outputs found

    K-LLVM: A Relatively Complete Semantics of LLVM IR

    Get PDF

    C์˜ ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ๊ณผ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™” ์กฐํ™”์‹œํ‚ค๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ํ—ˆ์ถฉ๊ธธ.์ฃผ๋ฅ˜ C ์ปดํŒŒ์ผ๋Ÿฌ๋“ค์€ ํ”„๋กœ๊ทธ๋žจ์˜ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๊ณต๊ฒฉ์ ์ธ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ๊ทธ๋Ÿฐ ์ตœ์ ํ™”๋Š” ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ์˜ ํ–‰๋™์„ ๋ฐ”๊พธ๊ธฐ๋„ ํ•œ๋‹ค. ๋ถˆํ–‰ํžˆ๋„ C ์–ธ์–ด๋ฅผ ๋””์ž์ธํ•  ๋•Œ ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ๊ณผ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋ฅผ ์ ์ ˆํ•˜๊ฒŒ ์กฐํ™”์‹œํ‚ค๊ฐ€ ๊ต‰์žฅํžˆ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์ด ํ•™๊ณ„์™€ ์—…๊ณ„์˜ ์ค‘๋ก ์ด๋‹ค. ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ์„ ์œ„ํ•ด์„œ๋Š”, ๊ทธ๋Ÿฌํ•œ ๊ธฐ๋Šฅ์ด ์‹œ์Šคํ…œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์— ์‚ฌ์šฉ๋˜๋Š” ํŒจํ„ด์„ ์ž˜ ์ง€์›ํ•ด์•ผ ํ•œ๋‹ค. ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•ด์„œ๋Š”, ์ฃผ๋ฅ˜ ์ปดํŒŒ์ผ๋Ÿฌ๊ฐ€ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ณต์žกํ•˜๊ณ ๋„ ํšจ๊ณผ์ ์ธ ์ตœ์ ํ™”๋ฅผ ์ž˜ ์ง€์›ํ•ด์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ๊ณผ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋ฅผ ๋™์‹œ์— ์ž˜ ์ง€์›ํ•˜๋Š” ์‹คํ–‰์˜๋ฏธ๋Š” ์˜ค๋Š˜๋‚ ๊นŒ์ง€ ์ œ์•ˆ๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์€ ์‹œ์Šคํ…œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์—์„œ ์š”๊ธดํ•˜๊ฒŒ ์‚ฌ์šฉ๋˜๋Š” ์ €์ˆ˜์ค€ ๊ธฐ๋Šฅ๊ณผ ์ฃผ์š”ํ•œ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋ฅผ ์กฐํ™”์‹œํ‚จ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์šฐ๋ฆฐ ๋‹ค์Œ ์„ฑ์งˆ์„ ๋งŒ์กฑํ•˜๋Š” ๋Š์Šจํ•œ ๋™์‹œ์„ฑ, ๋ถ„ํ•  ์ปดํŒŒ์ผ, ์ •์ˆ˜-ํฌ์ธํ„ฐ ๋ณ€ํ™˜์˜ ์‹คํ–‰์˜๋ฏธ๋ฅผ ์ฒ˜์Œ์œผ๋กœ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ๊ธฐ๋Šฅ์ด ์‹œ์Šคํ…œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํŒจํ„ด๊ณผ, ๊ทธ๋Ÿฌํ•œ ํŒจํ„ด์„ ๋…ผ์ฆํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ•์„ ์ง€์›ํ•œ๋‹ค. ๋‘˜์งธ, ์ฃผ์š”ํ•œ ์ปดํŒŒ์ผ๋Ÿฌ ์ตœ์ ํ™”๋“ค์„ ์ง€์›ํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ์‹คํ–‰์˜๋ฏธ์— ์ž์‹ ๊ฐ์„ ์–ป๊ธฐ ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ฒฐ๊ณผ๋ฅผ ๋Œ€๋ถ€๋ถ„ Coq ์ฆ๋ช…๊ธฐ ์œ„์—์„œ ์ฆ๋ช…ํ•˜๊ณ , ๊ทธ ์ฆ๋ช…์„ ๊ธฐ๊ณ„์ ์ด๊ณ  ์—„๋ฐ€ํ•˜๊ฒŒ ํ™•์ธํ–ˆ๋‹ค.To improve the performance of C programs, mainstream compilers perform aggressive optimizations that may change the behaviors of programs that use low-level features in unidiomatic ways. Unfortunately, despite many years of research and industrial efforts, it has proven very difficult to adequately balance the conflicting criteria for low-level features and compiler optimizations in the design of the C programming language. On the one hand, C should support the common usage patterns of the low-level features in systems programming. On the other hand, C should also support the sophisticated and yet effective optimizations performed by mainstream compilers. None of the existing proposals for C semantics, however, sufficiently support low-level features and compiler optimizations at the same time. In this dissertation, we resolve the conflict between some of the low-level features crucially used in systems programming and major compiler optimizations. Specifically, we develop the first formal semantics of relaxed-memory concurrency, separate compilation, and cast between integers and pointers that (1) supports their common usage patterns and reasoning principles for programmers, and (2) provably validates major compiler optimizations at the same time. To establish confidence in our formal semantics, we have formalized most of our key results in the Coq theorem prover, which automatically and rigorously checks the validity of the results.Abstract Acknowledgements Chapter I Prologue Chapter II Relaxed-Memory Concurrency Chapter III Separate Compilation and Linking Chapter IV Cast between Integers and Pointers Chapter V Epilogue ์ดˆ๋กDocto

    MetaFork: A Compilation Framework for Concurrency Models Targeting Hardware Accelerators

    Get PDF
    Parallel programming is gaining ground in various domains due to the tremendous computational power that it brings; however, it also requires a substantial code crafting effort to achieve performance improvement. Unfortunately, in most cases, performance tuning has to be accomplished manually by programmers. We argue that automated tuning is necessary due to the combination of the following factors. First, code optimization is machine-dependent. That is, optimization preferred on one machine may be not suitable for another machine. Second, as the possible optimization search space increases, manually finding an optimized configuration is hard. Therefore, developing new compiler techniques for optimizing applications is of considerable interest. This thesis aims at generating new techniques that will help programmers develop efficient algorithms and code targeting hardware acceleration technologies, in a more effective manner. Our work is organized around a compilation framework, called MetaFork, for concurrency platforms and its application to automatic parallelization. MetaFork is a high-level programming language extending C/C++, which combines several models of concurrency including fork-join, SIMD and pipelining parallelism. MetaFork is also a compilation framework which aims at facilitating the design and implementation of concurrent programs through four key features which make MetaFork unique and novel: (1) Perform automatic code translation between concurrency platforms targeting multi-core architectures. (2) Provide a high-level language for expressing concurrency as in the fork-join model, the SIMD paradigm and the pipelining parallelism. (3) Generate parallel code from serial code with an emphasis on code depending on machine or program parameters (e.g. cache size, number of processors, number of threads per thread block). (4) Optimize code depending on parameters that are unknown at compile-time
    corecore