6,017 research outputs found

    Formal Verification of Real-Time Function Blocks Using PVS

    Full text link
    A critical step towards certifying safety-critical systems is to check their conformance to hard real-time requirements. A promising way to achieve this is by building the systems from pre-verified components and verifying their correctness in a compositional manner. We previously reported a formal approach to verifying function blocks (FBs) using tabular expressions and the PVS proof assistant. By applying our approach to the IEC 61131-3 standard of Programmable Logic Controllers (PLCs), we constructed a repository of precise specification and reusable (proven) theorems of feasibility and correctness for FBs. However, we previously did not apply our approach to verify FBs against timing requirements, since IEC 61131-3 does not define composite FBs built from timers. In this paper, based on our experience in the nuclear domain, we conduct two realistic case studies, consisting of the software requirements and the proposed FB implementations for two subsystems of an industrial control system. The implementations are built from IEC 61131-3 FBs, including the on-delay timer. We find issues during the verification process and suggest solutions.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Formalization of the fundamental group in untyped set theory using auto2

    Full text link
    We present a new framework for formalizing mathematics in untyped set theory using auto2. Using this framework, we formalize in Isabelle/FOL the entire chain of development from the axioms of set theory to the definition of the fundamental group for an arbitrary topological space. The auto2 prover is used as the sole automation tool, and enables succinct proof scripts throughout the project.Comment: 17 pages, accepted for ITP 201

    Explaining Gabriel-Zisman localization to the computer

    Get PDF
    This explains a computer formulation of Gabriel-Zisman localization of categories in the proof assistant Coq. It includes both the general localization construction with the proof of GZ's Lemma 1.2, as well as the construction using calculus of fractions. The proof files are bundled with the other preprint "Files for GZ localization" posted simultaneously

    Consistency in Multi-Viewpoint Architectural Design of Enterprise Information Systems

    Get PDF
    Different stakeholders in the design of an enterprise information system have their own view on that design. To help produce a coherent design this paper presents a framework that aids in specifying relations between such views. To help produce a consistent design the framework also aids in specifying consistency rules that apply to the view relations and in checking the consistency according to those rules. The framework focuses on the higher levels of abstraction in a design, we refer to design at those levels of abstraction as architectural design. The highest level of abstraction that we consider is that of business process design and the lowest level is that of software component design. The contribution of our framework is that it provides a collection of basic concepts that is common to viewpoints in the area of enterprise information systems. These basic concepts aid in relating viewpoints by providing: (i) a common terminology that helps stakeholders to understand each others concepts; and (ii) a basis for defining re-usable consistency rules. In particular we define re-usable rules to check consistency between behavioural views that overlap or are a refinement of each other. We also present an architecture for a tool suite that supports our framework. We show that our framework can be applied, by performing a case study in which we specify the relations and consistency rules between the RM-ODP enterprise, computational and information viewpoints

    Verifying the Interplay of Authorization Policies and Workflow in Service-Oriented Architectures (Full version)

    Full text link
    A widespread design approach in distributed applications based on the service-oriented paradigm, such as web-services, consists of clearly separating the enforcement of authorization policies and the workflow of the applications, so that the interplay between the policy level and the workflow level is abstracted away. While such an approach is attractive because it is quite simple and permits one to reason about crucial properties of the policies under consideration, it does not provide the right level of abstraction to specify and reason about the way the workflow may interfere with the policies, and vice versa. For example, the creation of a certificate as a side effect of a workflow operation may enable a policy rule to fire and grant access to a certain resource; without executing the operation, the policy rule should remain inactive. Similarly, policy queries may be used as guards for workflow transitions. In this paper, we present a two-level formal verification framework to overcome these problems and formally reason about the interplay of authorization policies and workflow in service-oriented architectures. This allows us to define and investigate some verification problems for SO applications and give sufficient conditions for their decidability.Comment: 16 pages, 4 figures, full version of paper at Symposium on Secure Computing (SecureCom09
    • …
    corecore