89 research outputs found

    Technical Report on Formalisation of the Heart using Analysis of Conduction Time and Velocity of the Electrocardiography and Cellular-Automata

    Get PDF
    Formal methods based tools and techniques have been recognised to be a promising approach to support the process of verification and validation of a critical system in early stage of the development. Specially, medical devices are very prone to show an unexpected behavior of the system in operating due to stochastic nature of the system and when a system uses traditional methods for system testing. Device-related problems are responsible for a large number of serious injuries. FDA officials has found that many deaths and injuries related to the devices are caused by product design and engineering flaws. Cardiac pacemaker and implantable cardioverter-defibrillators (ICDs) are main critical medical devices, which require close-loop modeling (integration of system and environment modeling) for verification purpose to obtain a certificate from certification bodies. No any technique is available to provide an environment modeling to verify the developed system model. This report presents a methodology to model a biological system, like heart, for modeling a biological environment. The heart model is mainly based on electrocardiography analysis, which models the heart system at cellular level. Main objective of this methodology is to model the heart system and integrate with medical device model like cardiac pacemaker to specify a close-loop model. Close-loop model of an environment and a device is an open problem in real world. Industries are striving for such kind of approach from long time to validate a system model under a virtual biological environment. Our approach involves the pragmatic combination of formal specification of a system and a biological environment to model a close-loop system to verify the correctness of a system and helps in quality improvement of the system

    Analysis of Software Design Patterns in Human Cognitive Performance Experiments

    Get PDF
    As Air Force operations continue to move toward the use of more autonomous systems and more human-machine teaming in general, there is a corresponding need to swiftly evaluate systems with these capabilities. We support this development through software design improvements of the execution of human cognitive performance experiments. This thesis sought to answer the following two research questions addressing the core functionality that these experiments rely on for execution and analysis: 1) What data infrastructure software requirements are necessary to execute the experimental design of human cognitive performance experiments? 2) How effectively does a central data mediator design pattern meet the time-alignment requirements of human cognitive performance studies? To answer these questions, this research contributes an exploration of establishing design patterns to reduce the cost of conducting human cognitive performance studies. The activities included in this exploration were a method for requirements gathering, a meta-study of recent experiments, and a design pattern evaluation all focused on the experimental design domain

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfügbare und leicht zugängliche Fläche für Interaktion. Jüngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer Geräte geführt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten Epidermisgeräte haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dünn, oft dünner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles Verständnis von Epidermisgeräten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen Ansätzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinäre Analyse von Epidermisgeräten die Designziele und Herausforderungen, die angegangen werden müssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale Geräte unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des Geräts und den taktilen Empfindlichkeitsschwellen sowie der Fähigkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen für die Realisierung epidermaler Geräte ab. Zweitens trägt diese Thesis zu neuartigen Epidermisgeräten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trägt zur Herstellung und zum Design neuartiger Epidermisgeräte bei, die hochgradig an die Haut angepasst sind und Berührungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese Geräte können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum für die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir präsentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und Größen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestätigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-Verhältnis erreicht und eine hohe räumliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da Epidermisgeräte in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestützten Design von multimodalen Epidermisgeräten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten Geräte können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale Aktivität) messen. Darüber hinaus stellen wir eine computergestützte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte Gerätedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der Fähigkeit zur Erfassung physiologischer Signale und der Größe des Geräts. Das grafische Tool ermöglicht die einfache Festlegung von Designpräferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinären Perspektive einen Fahrplan für zukünftige Forschung in diesem Bereich, indem wir die nächsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trägt diese Arbeit zu einem ganzheitlichen Verständnis von Epidermisgeräten bei: Sie liefert ein empirisches und konzeptionelles Verständnis sowie technische Einblicke durch Beiträge zu DIY (Do-It-Yourself), schneller Fertigung und computergestützten Entwurfstechniken

    Design Strategies For Human Centered Sensor Networks

    Full text link
    Sensor networks hold great promise in a variety of applications, and have been the subject of a great deal of active research in recent years. Similar to large scale computer networks, such as the internet, sensor networks are in essence information gathering mechanisms. In addition, sensor networks directly gather information about their environment, making this information available at what could be considered an extremely low cost. This feature is in part responsible for their wide applicability, but also makes sensor networks fundamentally different from other network technologies. This dissertation examines the construction of two sensor network systems, and asserts that, among sensor network applications, there is a critical distinction between those which are human-centered and non-human-centered. The first of these two particular systems used sensors embedded in an indoor environment to assess the movement of persons throughout the space. The second is the development of a medically oriented system which includes primarily wearable sensors. Through a discussion of their design and construction, we will distill design strategies for constructing such systems, particularly noting features which separate human-centered and non-human-centered systems

    Technical Report on Interpretation of the Electrocardiogram (ECG) Signal using Formal Methods

    Get PDF
    Today an evidence-based medicine has given number of medical practice clinical guidelines and protocols. Clinical guidelines systematically assist practitioners with providing appropriate health care for specific clinical circumstances. However, a significant number of guidelines and protocols are lacking in quality. Indeed, ambiguity and incompleteness are more likely anomalies in medical practices. From last few years, many researchers have tried to address the problem of protocol improvement in clinical guidelines, but results are not sufficient since they believe on informal processes and notations. Our objective is to find anomalies and to improve the quality of medical protocols using well known formal techniques, such as Event B. In this report, we use the Event B modeling language to capture guidelines for their validation. We have established a classification of possible properties to be verified in a guideline. Our approach is illustrated with a guideline which published by the National Guideline Clearing House (NGC) and AHA/ACC Society. Our main contribution is to evaluate real-life medical protocols using refinement based formal method like Event B for improving quality of the protocols. Refinement based formalisation is very easy to handle any complex medical protocols. For this evaluation we have selected a real-life reference protocol (ECG Interpretation) which covers a wide variety of protocol characteristics related to the several heart diseases. We formalise the given reference protocol, verify a set of interesting properties of the protocol and finally determine anomalies. Our main results are: to formalise an ECG interpretation protocol for diagnosing the ECG signal in optimal way; to discover an hierarchical structure for the ECG interpretation efficiently using incremental refinement approach; a set of properties which should be satisfied by medical protocol; verification proofs for the protocol and properties according to the medical experts; and perspectives of the potentials of this approach. Finally, we have shown the feasibility of our approach for analysing medical protocols

    Visual Analytics for Medical Workflow Optimization

    Get PDF

    The feedback 's effect on motor learning task in pianists

    Get PDF
    openla presente tesi vuole investigare gli effetti di feedback positivi o negativi sull'apprendimento motorio in pianisti, con l'ipotesi che i pianisti mostreranno un apprendimento piĂą veloce con feedback negativi. Inoltre, si vuole investigare se l'elaborazione di feedback negativi sia associata ad una riduzione di beta oscillations.The research's aim is to investigate if pianist will learn faster from negative feedback or positive feedback and if the motor learning process with negative feedabck is associated to reduced beta power

    COMPUTER-AIDED TRAUMA DECISION MAKING USING MACHINE LEARNING AND SIGNAL PROCESSING

    Get PDF
    Over the last 20 years, much work has focused on computer-aided clinical decision support systems due to a rapid increase in the need for management and processing of medical knowledge. Among all fields of medicine, trauma care has the highest need for proper information management due to the high prevalence of complex, life-threatening injuries. In particular, hemorrhage, which is encountered in most traumatic injuries, is a dominant factor in determining survival in both civilian and military settings. This complication can be better managed using a more in-depth analysis of patient information. Trauma physicians must make precise and rapid decisions, while considering a large number of patient variables and dealing with stressful environments. The ability of a computer-aided decision making system to rapidly analyze a patient’s condition can enable physicians to make more accurate decisions and thereby significantly improve the quality of care provided to patients. The first part of this study is focused on classification of highly complex databases using a hierarchical method which combines two complementary techniques: logistic regression and machine learning. This method, hereafter referred to as Classification Using Significant Features (CUSF), includes a statistical process to select the most significant variables from the correlated database. Then a machine learning algorithm is used to identify the data into classes using only the significant variables. As the main application addressed by CUSF, a set of computer-assisted rule-based trauma decision making system are designed. Computer aided decision-making system not only provides vital assistance for physicians in making fast and accurate decisions, proposed decisions are supported by transparent reasoning, but also can confirm a physicians’ current knowledge, enabling them to detect complex patterns and information which may reveal new knowledge not easily visible to the human eyes. The second part of this study proposes an algorithm based on a set of novel wavelet features to analyze physiological signals, such as Electrocardiograms (ECGs) that can provide invaluable information typically invisible to human eyes. These wavelet-based method, hereafter referred to as Signal Analysis Based on Wavelet-Extracted Features (SABWEF), extracts information that can be used to detect and analyze complex patterns that other methods such as Fourier cannot deal with. For instance, SABWEF can evaluate the severity of hemorrhagic shock (HS) from ECG, while the traditional technique of applying power spectrum density (PSD) and fractal dimension (FD) cannot distinguish between the ECG patterns of patients with HS (i.e. blood loss), and those of subjects undergoing physical activity. In this study, as the main application of SABWEF, ECG is analyzed to distinguish between HS and physical activity, and show that SABWEF can be used in both civilian and military settings to detect HS and its extent. This is the first reported use of an ECG analysis method to classify blood volume loss. SABWEF has the capability to rapidly determine the degree of volume loss from hemorrhage, providing the chance for more rapid remote triage and decision making

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems

    Quantifying individual variation in fine-scale time and energy trade-offs in breeding grey seals: How do differing behavioural types solve these trade-offs?

    Get PDF
    Lactation is one of the most energetically demanding periods of any female mammal’s life history, where individuals strike a balance with limited resources between their daily activity and towards the growth of their offspring, while still maintaining enough energy stores to maintain themselves in the process. Capital breeding systems mean that females must sustain themselves and their offspring while fasting exclusively on energy reserves acquired beforehand. Female phocids as a result must deal with pressures of a brief terrestrial existence where trade-offs in time, behaviour, energy, and responsiveness to the environment can have tangible consequences to short-term fitness and health. The aim of this thesis was to use new techniques, specifically animal-borne accelerometers and heart rate monitors, to track behaviour and physiology and assess the inherent trade-offs therein through the core duration of lactation in a capital breeding phocid, the grey seal (Halichoerus grypus). Female grey seals were equipped with biologging devices on the Isle of May over three consecutive breeding seasons. Using accelerometry and heart rate techniques, I aimed (1) to remotely classify behaviour using machine learning techniques, (2) to assess trade-offs in time-activity for the duration of lactation, (3) to build a holistic picture of energy allocation within the species, and (4) to develop new methods for tracking heart rate and breathing for terrestrial mammals using grey seals as a model. I also assessed the effect that consistent individual variability in behaviour, stress-coping styles, may have on the methods developed here and how they may drive behaviour and energy trade-offs over time. Accelerometers presented a useful way to remotely track several key behaviours, accurately classifying the core static behaviours over lactation. Consistent individual differences in stress-coping styles, as determined from measures of heart rate variability, modulated almost every aspect of behaviour and physiology measured in this study. More specifically, consistent trade-offs were identified for grey seal mothers between balancing time spent in a state of rest against remaining vigilant across multiple contexts, but also that these individual differences drove how individuals manage and expend that energy, ultimately resulting in differences in short-term fitness outcomes. Effort towards nursing, however, appeared to be largely fixed. Individual differences in energy management also appear to result in different levels of plasticity to environmental pressures, suggesting that future ambient conditions may not be suitable for breeding seals. This thesis also successfully detected breathing rates on land, revealing new evidence as to the energy saving and water conservation benefits of regularly engaging in periods of breath-hold while at rest. Overall, this thesis has provided new tools for exploring behaviour and physiology, and the inherent trade-offs therein, with minimal disturbance to lactating phocid seals. These differences, while minute in the scope of evolutionary constraints, may be among the most important drivers for the success and survival of populations in the face of greater environmental variability as the climate continues to change
    • …
    corecore