593 research outputs found

    Harnessing Human Potential for Security Analytics

    Get PDF
    Humans are often considered the weakest link in cybersecurity. As a result, their potential has been continuously neglected. However, in recent years there is a contrasting development recognizing that humans can benefit the area of security analytics, especially in the case of security incidents that leave no technical traces. Therefore, the demand becomes apparent to see humans not only as a problem but also as part of the solution. In line with this shift in the perception of humans, the present dissertation pursues the research vision to evolve from a human-as-a-problem to a human-as-a-solution view in cybersecurity. A step in this direction is taken by exploring the research question of how humans can be integrated into security analytics to contribute to the improvement of the overall security posture. In addition to laying foundations in the field of security analytics, this question is approached from two directions. On the one hand, an approach in the context of the human-as-a-security-sensor paradigm is developed which harnesses the potential of security novices to detect security incidents while maintaining high data quality of human-provided information. On the other hand, contributions are made to better leverage the potential of security experts within a SOC. Besides elaborating the current state in research, a tool for determining the target state of a SOC in the form of a maturity model is developed. Based on this, the integration of security experts was improved by the innovative application of digital twins within SOCs. Accordingly, a framework is created that improves manual security analyses by simulating attacks within a digital twin. Furthermore, a cyber range was created, which offers a realistic training environment for security experts based on this digital twin

    Distributed IoT Attestation via Blockchain (Extended Version)

    Get PDF
    The growing number and nature of Internet of Things (IoT) devices makes these resource-constrained appliances particularly vulnerable and increasingly impactful in their exploitation. Current estimates for the number of connected things commonly reach the tens of billions. The low-cost and limited computational strength of these devices can preclude security features. Additionally, economic forces and a lack of industry expertise in security often contribute to a rush to market with minimal consideration for security implications. It is essential that users of these emerging technologies, from consumers to IT professionals, be able to establish and retain trust in the multitude of diverse and pervasive compute devices that are ever more responsible for our critical infrastructure and personal information. Remote attestation is a well-known technique for building such trust between devices. In standard implementations, a potentially untrustworthy prover attests, using public key infrastructure, to a verifier about its configuration or properties of its current state. Attestation is often performed on an ad hoc basis with little concern for historicity. However, controls and sensors manufactured for the Industrial IoT (IIoT) may be expected to operate for decades. Even in the consumer market, so-called smart things can be expected to outlive their manufacturers. This longevity combined with limited software or firmware patching creates an ideal environment for long-lived zero-day vulnerabilities. Knowing both if a device is vulnerable and if so when it became vulnerable is a management nightmare as IoT deployments scale. For network connected machines, with access to sensitive information and real-world physical controls, maintaining some sense of a device\u27s lifecycle would be insightful. In this paper, we propose a novel attestation architecture, DAN: a distributed attestation network, utilizing blockchain to store and share device information. We present the design of this new attestation architecture, and describe a virtualized simulation, as well as a prototype system chosen to emulate an IoT deployment with a network of Raspberry Pi, Infineon TPMs, and a Hyperledger Fabric blockchain. We discuss the implications and potential challenges of such a network for various applications such as identity management, intrusion detection, forensic audits, and regulatory certification

    Security Management Framework for the Internet of Things

    Get PDF
    The increase in the design and development of wireless communication technologies offers multiple opportunities for the management and control of cyber-physical systems with connections between smart and autonomous devices, which provide the delivery of simplified data through the use of cloud computing. Given this relationship with the Internet of Things (IoT), it established the concept of pervasive computing that allows any object to communicate with services, sensors, people, and objects without human intervention. However, the rapid growth of connectivity with smart applications through autonomous systems connected to the internet has allowed the exposure of numerous vulnerabilities in IoT systems by malicious users. This dissertation developed a novel ontology-based cybersecurity framework to improve security in IoT systems using an ontological analysis to adapt appropriate security services addressed to threats. The composition of this proposal explores two approaches: (1) design time, which offers a dynamic method to build security services through the application of a methodology directed to models considering existing business processes; and (2) execution time, which involves monitoring the IoT environment, classifying vulnerabilities and threats, and acting in the environment, ensuring the correct adaptation of existing services. The validation approach was used to demonstrate the feasibility of implementing the proposed cybersecurity framework. It implies the evaluation of the ontology to offer a qualitative evaluation based on the analysis of several criteria and also a proof of concept implemented and tested using specific industrial scenarios. This dissertation has been verified by adopting a methodology that follows the acceptance in the research community through technical validation in the application of the concept in an industrial setting.O aumento no projeto e desenvolvimento de tecnologias de comunicação sem fio oferece múltiplas oportunidades para a gestão e controle de sistemas ciber-físicos com conexões entre dispositivos inteligentes e autônomos, os quais proporcionam a entrega de dados simplificados através do uso da computação em nuvem. Diante dessa relação com a Internet das Coisas (IoT) estabeleceu-se o conceito de computação pervasiva que permite que qualquer objeto possa comunicar com os serviços, sensores, pessoas e objetos sem intervenção humana. Entretanto, o rápido crescimento da conectividade com as aplicações inteligentes através de sistemas autônomos conectados com a internet permitiu a exposição de inúmeras vulnerabilidades dos sistemas IoT para usuários maliciosos. Esta dissertação desenvolveu um novo framework de cibersegurança baseada em ontologia para melhorar a segurança em sistemas IoT usando uma análise ontológica para a adaptação de serviços de segurança apropriados endereçados para as ameaças. A composição dessa proposta explora duas abordagens: (1) tempo de projeto, o qual oferece um método dinâmico para construir serviços de segurança através da aplicação de uma metodologia dirigida a modelos, considerando processos empresariais existentes; e (2) tempo de execução, o qual envolve o monitoramento do ambiente IoT, a classificação de vulnerabilidades e ameaças, e a atuação no ambiente garantindo a correta adaptação dos serviços existentes. Duas abordagens de validação foram utilizadas para demonstrar a viabilidade da implementação do framework de cibersegurança proposto. Isto implica na avaliação da ontologia para oferecer uma avaliação qualitativa baseada na análise de diversos critérios e também uma prova de conceito implementada e testada usando cenários específicos. Esta dissertação foi validada adotando uma metodologia que segue a validação na comunidade científica através da validação técnica na aplicação do nosso conceito em um cenário industrial

    Vulnerability management service for product life cycle

    Get PDF
    This thesis was commissioned by a large enterprise. The company requires a vulnerability management solution, which would enable them to manage vulnerabilities throughout the product life cycle. An analysis was required on whether such solution should be purchased or built as an internal project. This study was completed in two main phases. First, a make-or-buy decision was done based on the analysis. Second, a suitable VMS design and implementation was suggested. To collect input for the analysis, all potential users were identified and from them groups of volunteers were invited to interviews. The data from the focus group interviews was then processed and documented in the form of requirement specification for Vulnerability Management Service (VMS). Commercial off-the-shelf solutions were compared against the list of requirements. A second round of review was done with selected commercial products, which fulfilled majority of the requirements. As a result of the performed comparisons, this study concluded that building an own solution would deliver higher Return on Investment (ROI) in long term perspective. VMS stakeholders accepted the recommendation of this study and proceeded to fund the design and implementation. The study goes on to provide guidelines for service design and implementation based on industry best practices. This paper also introduces a useful maturity model for VMS capabilities and monitoring of the evolution of vulnerability management practices

    Coordinated Machine Learning and Decision Support for Situation Awareness

    Get PDF
    For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator\u27s input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario

    Architecture-centric support for security orchestration and automation

    Get PDF
    Security Orchestration, Automation and Response (SOAR) platforms leverage integration and orchestration technologies to (i) automate manual and repetitive labor-intensive tasks, (ii) provide a single panel of control to manage various types of security tools (e.g., intrusion detection system, antivirus and firewall) and (iii) streamline complex Incident Response Process (IRP) responses. SOAR platforms increase the operational efficiency of overwhelmed security teams in a Security Operation Centre (SOC) and accelerate the SOC’s defense and response capacity against ever-growing security incidents. Security tools, IRPs and security requirements form the underlying execution environment of SOAR platforms, which are changing rapidly due to the dynamic nature of security threats. A SOAR platform is expected to adapt continuously to these dynamic changes. Flexible integration, interpretation and interoperability of security tools are essential to ease the adaptation of a SOAR platform. However, most of the effort for designing and developing existing SOAR platforms are ad-hoc in nature, which introduces several engineering challenges and research challenges. For instance, the advancement of a SOAR platform increases its architectural complexity and makes the operation of such platforms difficult for end-users. These challenges come from a lack of a comprehensive view, design space and architectural support for SOAR platforms. This thesis aims to contribute to the growing realization that it is necessary to advance SOAR platforms by designing, implementing and evaluating architecture-centric support to address several of the existing challenges. The envisioned research and development activities require the identification of current practices and challenges of SOAR platforms; hence, a Multivocal Literature Review (MLR) has been designed, conducted and reported. The MLR identifies the functional and non-functional requirements, components and practices of a security orchestration domain, along with the open issues. This thesis advances the domain of a SOAR platform by providing a layered architecture, which considers the key functional and non-functional requirements of a SOAR platform. The proposed architecture is evaluated experimentally with a Proof of Concept (PoC) system, Security Tool Unifier (STUn), using seven security tools, a set of IRPs and playbooks. The research further identifies the need for and design of (i) an Artificial Intelligence (AI) based integration framework to interpret the activities of security tools and enable interoperability automatically, (ii) a semantic-based automated integration process to integrate security tools and (iii) AI-enabled design and generation of a declarative API from user query, namely DecOr, to hide the internal complexity of a SOAR platform from end-users. The experimental evaluation of the proposed approaches demonstrates that (i) consideration of architectural design decisions supports the development of an easy to interact with, modify and update SOAR platform, (ii) an AI-based integration framework and automated integration process provides effective and efficient integration and interpretation of security tools and IRPs and (iii) DecOr increases the usability and flexibility of a SOAR platform. This thesis is a useful resource and guideline for both practitioners and researchers who are working in the security orchestration domain. It provides an insight into how an architecture-centric approach, with incorporation of AI technologies, reduces the operational complexity of SOAR platforms.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202

    Defense in Depth of Resource-Constrained Devices

    Get PDF
    The emergent next generation of computing, the so-called Internet of Things (IoT), presents significant challenges to security, privacy, and trust. The devices commonly used in IoT scenarios are often resource-constrained with reduced computational strength, limited power consumption, and stringent availability requirements. Additionally, at least in the consumer arena, time-to-market is often prioritized at the expense of quality assurance and security. An initial lack of standards has compounded the problems arising from this rapid development. However, the explosive growth in the number and types of IoT devices has now created a multitude of competing standards and technology silos resulting in a highly fragmented threat model. Tens of billions of these devices have been deployed in consumers\u27 homes and industrial settings. From smart toasters and personal health monitors to industrial controls in energy delivery networks, these devices wield significant influence on our daily lives. They are privy to highly sensitive, often personal data and responsible for real-world, security-critical, physical processes. As such, these internet-connected things are highly valuable and vulnerable targets for exploitation. Current security measures, such as reactionary policies and ad hoc patching, are not adequate at this scale. This thesis presents a multi-layered, defense in depth, approach to preventing and mitigating a myriad of vulnerabilities associated with the above challenges. To secure the pre-boot environment, we demonstrate a hardware-based secure boot process for devices lacking secure memory. We introduce a novel implementation of remote attestation backed by blockchain technologies to address hardware and software integrity concerns for the long-running, unsupervised, and rarely patched systems found in industrial IoT settings. Moving into the software layer, we present a unique method of intraprocess memory isolation as a barrier to several prevalent classes of software vulnerabilities. Finally, we exhibit work on network analysis and intrusion detection for the low-power, low-latency, and low-bandwidth wireless networks common to IoT applications. By targeting these areas of the hardware-software stack, we seek to establish a trustworthy system that extends from power-on through application runtime

    Coordinated machine learning and decision support for situation awareness.

    Full text link
    corecore