2,739 research outputs found

    Using formal metamodels to check consistency of functional views in information systems specification

    Get PDF
    UML notations require adaptation for applications such as Information Systems (IS). Thus we have defined IS-UML. The purpose of this article is twofold. First, we propose an extension to this language to deal with functional aspects of IS. We use two views to specify IS transactions: the first one is defined as a combination of behavioural UML diagrams (collaboration and state diagrams), and the second one is based on the definition of specific classes of an extended class diagram. The final objective of the article is to consider consistency issues between the various diagrams of an IS-UML specification. In common with other UML languages, we use a metamodel to define IS-UML. We use class diagrams to summarize the metamodel structure and a formal language, B, for the full metamodel. This allows us to formally express consistency checks and mapping rules between specific metamodel concepts. (C) 2007 Elsevier B.V. All rights reserved

    Component Composition in Business and System Modelling

    Get PDF
    Bespoke development of large business systems can be couched in terms of the composition of components, which are, put simply, chunks of development work. Design, mapping a specification to an implementation, can also be expressed in terms of components: a refinement comprising an abstract component, a concrete component and a mapping between them. Similarly, system extension is the composition of an existing component, the legacy system, with a new component, the extension. This paper overviews work being done on a UK EPSRC funded research project formulating and formalizing techniques for describing, composing and performing integrity checks on components. Although the paper focuses on the specification and development of information systems, the techniques are equally applicable to the modeling and re-engineering of businesses, where no computer system may be involved

    Dynamic Matching and Weaving Semantics in Executable UML

    Get PDF
    In this chapter, we elaborate a denotational semantics for aspect matching and weaving in Executable UML (xUML). More precisely, we specify xUML models using the standard Action Language for Foundational UML (Alf). As we did in the previous chapter, we start by formalizing the matching and the weaving processes for basic pointcuts. Then, we elaborate the semantics for the dataflow pointcut, which is relevant from a security perspective

    Challenges and Directions in Formalizing the Semantics of Modeling Languages

    Get PDF
    Developing software from models is a growing practice and there exist many model-based tools (e.g., editors, interpreters, debuggers, and simulators) for supporting model-driven engineering. Even though these tools facilitate the automation of software engineering tasks and activities, such tools are typically engineered manually. However, many of these tools have a common semantic foundation centered around an underlying modeling language, which would make it possible to automate their development if the modeling language specification were formalized. Even though there has been much work in formalizing programming languages, with many successful tools constructed using such formalisms, there has been little work in formalizing modeling languages for the purpose of automation. This paper discusses possible semantics-based approaches for the formalization of modeling languages and describes how this formalism may be used to automate the construction of modeling tools

    A Formal Metamodeling Approach to a Transformation between Visual and Formal Modeling Techniques

    Get PDF
    Formal modeling notations and visual modeling notations can complement each other when developing software models. The most frequently adopted approach is to define transformations between the visual and formal models. However, a significant problem with the currently suggested approaches is that the transformation itself is often described imprecisely, with the result that the overall transformation task may be imprecise, incomplete and inconsistent. This paper presents a formal metamodeling approach to transform between UML and Object-Z. In the paper, the two languages are defined in terms of their formal metamodels, and a systematic transformation between the models is provided at the meta-level in terms of formal mapping functions. As a consequence, we can provide a precise, consistent and complete transformation between a visual model in UML and a formal model in Object-Z

    Translating UML State Machines to Coloured Petri Nets Using Acceleo: A Report

    Full text link
    UML state machines are widely used to specify dynamic systems behaviours. However its semantics is described informally, thus preventing the application of model checking techniques that could guarantee the system safety. In a former work, we proposed a formalisation of non-concurrent UML state machines using coloured Petri nets, so as to allow for formal verification. In this paper, we report our experience to implement this translation in an automated manner using the model-to-text transformation tool Acceleo. Whereas Acceleo provides interesting features that facilitated our translation process, it also suffers from limitations uneasy to overcome.Comment: In Proceedings ESSS 2014, arXiv:1405.055
    • …
    corecore