4,469 research outputs found

    Towards Formal Interaction-Based Models of Grid Computing Infrastructures

    Full text link
    Grid computing (GC) systems are large-scale virtual machines, built upon a massive pool of resources (processing time, storage, software) that often span multiple distributed domains. Concurrent users interact with the grid by adding new tasks; the grid is expected to assign resources to tasks in a fair, trustworthy way. These distinctive features of GC systems make their specification and verification a challenging issue. Although prior works have proposed formal approaches to the specification of GC systems, a precise account of the interaction model which underlies resource sharing has not been yet proposed. In this paper, we describe ongoing work aimed at filling in this gap. Our approach relies on (higher-order) process calculi: these core languages for concurrency offer a compositional framework in which GC systems can be precisely described and potentially reasoned about.Comment: In Proceedings DCM 2013, arXiv:1403.768

    Integrating formal reasoning into component-based approach to reconfigurable distributed systems

    Get PDF
    Distributed computing is becoming ubiquitous in recent years in many areas, especially the scientific and industrial ones, where the processing power - even that of supercomputers - never seems to be enough. Grid systems were born out of necessity, and had to grow quickly to meet requirements which evolved over time, becoming today’s complex systems. Even the simplest distributed system nowadays is expected to have some basic functionalities, such as resources and execution management, security and optimization features, data control, etc. The complexity of Grid applications is also accentuated by their distributed nature, making them some of the most elaborate systems to date. It is often too easy that these intricate systems happen to fall in some kind of failure, it being a software bug, or plain simple human error; and if such a failure occurs, it is not always the case that the system can recover from it, possibly meaning hours of wasted computational power. In this thesis, some of the problems which are at the core of the development and mainte- nance of Grid software applications are addressed by introducing novel and solid approaches to their solution. The difficulty of Grid systems to deal with unforeseen and unexpected cir- cumstances resulting from dynamic reconfiguration can be identified. Such problems are often related to the fact that Grid applications are large, distributed and prone to resource failures. This research has produced a methodology for the solution of this problem by analysing the structure of distributed systems and their reliance on the environment which they sit upon, often overlooked when dealing with these types of scenarios. It is concluded that the way that Grid applications interact with the infrastructure is not sufficiently addressed and a novel approach is developed in which formal verification methods are integrated with distributed applications development and deployment in a way that includes the environment. This approach allows for reconfiguration scenarios in distributed applications to proceed in a safe and controlled way, as demonstrated by the development of a prototype application

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Temporal specification and deductive verification of a distributed component model and its environment

    Get PDF
    In this paper we investigate the formalisation of distributed and long-running stateful systems using our normative temporal specification framework. We analyse aspects of a component-oriented Grid system, and the benefits of having a logic-based tool to perform automated and safe dynamic reconfiguration of its components. We describe which parts of this Grid system are involved in the reconfiguration process and detail the translation procedure into a state-based formal specification. Subsequently, we apply deductive verification to test whether dynamic reconfiguration can be performed. Finally, we analyse the procedure required to update our model for reconfiguration and justify the validity and the advantages of our methodology

    The knowledge-based software assistant

    Get PDF
    Where the Knowledge Based Software Assistant (KBSA) is now, four years after the initial report, is discussed. Also described is what the Rome Air Development Center expects at the end of the first contract iteration. What the second and third contract iterations will look like are characterized

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions
    corecore