103 research outputs found

    A Formalization of Dedekind Domains and Class Groups of Global Fields

    Get PDF
    Submitted to the conference Interactive Theorem Proving 2021 (Rome, Italy)International audienceDedekind domains and their class groups are notions in commutative algebra that are essential in algebraic number theory. We formalized these structures and several fundamental properties, including number theoretic finiteness results for class groups, in the Lean prover as part of the mathlib mathematical library. This paper describes the formalization process, noting the idioms we found useful in our development and mathlib's decentralized collaboration processes involved in this project

    Formalizing the Solution to the Cap Set Problem

    Get PDF
    In 2016, Ellenberg and Gijswijt established a new upper bound on the size of subsets of F^n_q with no three-term arithmetic progression. This problem has received much mathematical attention, particularly in the case q = 3, where it is commonly known as the cap set problem. Ellenberg and Gijswijt\u27s proof was published in the Annals of Mathematics and is noteworthy for its clever use of elementary methods. This paper describes a formalization of this proof in the Lean proof assistant, including both the general result in F^n_q and concrete values for the case q = 3. We faithfully follow the pen and paper argument to construct the bound. Our work shows that (some) modern mathematics is within the range of proof assistants

    LISA - A Modern Proof System

    Get PDF

    Verified Decision Procedures for Modal Logics

    Get PDF
    We describe a formalization of modal tableaux with histories for the modal logics K, KT and S4 in Lean. We describe how we formalized the static and transitional rules, the non-trivial termination and the correctness of loop-checks. The formalized tableaux are essentially executable decision procedures with soundness and completeness proved. Termination is also proved in order to define them as functions in Lean. All of these decision procedures return a concrete Kripke model in cases where the input set of formulas is satisfiable, and a proof constructed via the tableau rules witnessing unsatisfiability otherwise. We also describe an extensible formalization of backjumping and its verified implementation for the modal logic K. As far as we know, these are the first verified decision procedures for these modal logics
    • …
    corecore