32,252 research outputs found

    Semantic Criteria of Correct Formalization

    Get PDF
    This paper compares several models of formalization. It articulates criteria of correct formalization and identifies their problems. All of the discussed criteria are so called “semantic” criteria, which refer to the interpretation of logical formulas. However, as will be shown, different versions of an implicitly applied or explicitly stated criterion of correctness depend on different understandings of “interpretation” in this context

    Constructing categories and setoids of setoids in type theory

    Full text link
    In this paper we consider the problem of building rich categories of setoids, in standard intensional Martin-L\"of type theory (MLTT), and in particular how to handle the problem of equality on objects in this context. Any (proof-irrelevant) family F of setoids over a setoid A gives rise to a category C(A, F) of setoids with objects A. We may regard the family F as a setoid of setoids, and a crucial issue in this article is to construct rich or large enough such families. Depending on closure conditions of F, the category C(A, F) has corresponding categorical constructions. We exemplify this with finite limits. A very large family F may be obtained from Aczel's model construction of CZF in type theory. It is proved that the category so obtained is isomorphic to the internal category of sets in this model. Set theory can thus establish (categorical) properties of C(A, F) which may be used in type theory. We also show that Aczel's model construction may be extended to include the elements of any setoid as atoms or urelements. As a byproduct we obtain a natural extension of CZF, adding atoms. This extension, CZFU, is validated by the extended model. The main theorems of the paper have been checked in the proof assistant Coq which is based on MLTT. A possible application of this development is to integrate set-theoretic and type-theoretic reasoning in proof assistants.Comment: 14 page

    A Formal Approach based on Fuzzy Logic for the Specification of Component-Based Interactive Systems

    Full text link
    Formal methods are widely recognized as a powerful engineering method for the specification, simulation, development, and verification of distributed interactive systems. However, most formal methods rely on a two-valued logic, and are therefore limited to the axioms of that logic: a specification is valid or invalid, component behavior is realizable or not, safety properties hold or are violated, systems are available or unavailable. Especially when the problem domain entails uncertainty, impreciseness, and vagueness, the appliance of such methods becomes a challenging task. In order to overcome the limitations resulting from the strict modus operandi of formal methods, the main objective of this work is to relax the boolean notion of formal specifications by using fuzzy logic. The present approach is based on Focus theory, a model-based and strictly formal method for componentbased interactive systems. The contribution of this work is twofold: i) we introduce a specification technique based on fuzzy logic which can be used on top of Focus to develop formal specifications in a qualitative fashion; ii) we partially extend Focus theory to a fuzzy one which allows the specification of fuzzy components and fuzzy interactions. While the former provides a methodology for approximating I/O behaviors under imprecision, the latter enables to capture a more quantitative view of specification properties such as realizability.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    A Framework for Combining Defeasible Argumentation with Labeled Deduction

    Full text link
    In the last years, there has been an increasing demand of a variety of logical systems, prompted mostly by applications of logic in AI and other related areas. Labeled Deductive Systems (LDS) were developed as a flexible methodology to formalize such a kind of complex logical systems. Defeasible argumentation has proven to be a successful approach to formalizing commonsense reasoning, encompassing many other alternative formalisms for defeasible reasoning. Argument-based frameworks share some common notions (such as the concept of argument, defeater, etc.) along with a number of particular features which make it difficult to compare them with each other from a logical viewpoint. This paper introduces LDSar, a LDS for defeasible argumentation in which many important issues concerning defeasible argumentation are captured within a unified logical framework. We also discuss some logical properties and extensions that emerge from the proposed framework.Comment: 15 pages, presented at CMSRA Workshop 2003. Buenos Aires, Argentin

    Towards the Formal Reliability Analysis of Oil and Gas Pipelines

    Get PDF
    It is customary to assess the reliability of underground oil and gas pipelines in the presence of excessive loading and corrosion effects to ensure a leak-free transport of hazardous materials. The main idea behind this reliability analysis is to model the given pipeline system as a Reliability Block Diagram (RBD) of segments such that the reliability of an individual pipeline segment can be represented by a random variable. Traditionally, computer simulation is used to perform this reliability analysis but it provides approximate results and requires an enormous amount of CPU time for attaining reasonable estimates. Due to its approximate nature, simulation is not very suitable for analyzing safety-critical systems like oil and gas pipelines, where even minor analysis flaws may result in catastrophic consequences. As an accurate alternative, we propose to use a higher-order-logic theorem prover (HOL) for the reliability analysis of pipelines. As a first step towards this idea, this paper provides a higher-order-logic formalization of reliability and the series RBD using the HOL theorem prover. For illustration, we present the formal analysis of a simple pipeline that can be modeled as a series RBD of segments with exponentially distributed failure times.Comment: 15 page
    • …
    corecore