3,654 research outputs found

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Molecular Interactions. On the Ambiguity of Ordinary Statements in Biomedical Literature

    Get PDF
    Statements about the behavior of biochemical entities (e.g., about the interaction between two proteins) abound in the literature on molecular biology and are increasingly becoming the targets of information extraction and text mining techniques. We show that an accurate analysis of the semantics of such statements reveals a number of ambiguities that have to be taken into account in the practice of biomedical ontology engineering: Such statements can not only be understood as event reporting statements, but also as ascriptions of dispositions or tendencies that may or may not refer to collectives of interacting molecules or even to collectives of interaction events

    Verifying a medical protocol with temporal graphs: The case of a nosocomial disease

    Get PDF
    Objective: Our contribution focuses on the implementation of a formal verification approach for medical protocols with graphical temporal reasoning paths to facilitate the understanding of verification steps. Materials and methods: Formal medical guideline specifications and background knowledge are represented through conceptual graphs, and reasoning is based on graph homomorphism. These materials explain the underlying principles or rationale that guide the functioning of verifications. Results: An illustration of this proposal is made using a medical protocol defining guidelines for the monitoring and prevention of nosocomial infections. Such infections, which are acquired in the hospital, increasemorbidity andmortality and add noticeably to economic burden. An evaluation of the use of the graphical verification found that this method aids in the improvement of both clinical knowledge and the quality of actions made. Discussion: As conceptual graphs, representations based on diagrams can be translated into computational tree logic. However, diagrams are much more natural and explicitly human, emphasizing a theoretical and practical consistency. Conclusion: The proposed approach allows for the visualmodeling of temporal reasoning and a formalization of knowledge that can assist in the diagnosis and treatment of nosocomial infections and some clinical problems. This is the first time that one emphasizes the temporal situation modeling in conceptual graphs. It will also deliver a formal verification method for clinical guideline analyses
    • …
    corecore