2,087 research outputs found

    Expression-based aliasing for OO-languages

    Full text link
    Alias analysis has been an interesting research topic in verification and optimization of programs. The undecidability of determining whether two expressions in a program may reference to the same object is the main source of the challenges raised in alias analysis. In this paper we propose an extension of a previously introduced alias calculus based on program expressions, to the setting of unbounded program executions s.a. infinite loops and recursive calls. Moreover, we devise a corresponding executable specification in the K-framework. An important property of our extension is that, in a non-concurrent setting, the corresponding alias expressions can be over-approximated in terms of a notion of regular expressions. This further enables us to show that the associated K-machinery implements an algorithm that always stops and provides a sound over-approximation of the "may aliasing" information, where soundness stands for the lack of false negatives. As a case study, we analyze the integration and further applications of the alias calculus in SCOOP. The latter is an object-oriented programming model for concurrency, recently formalized in Maude; K-definitions can be compiled into Maude for execution

    Managing polyglot systems metadata with hypergraphs

    Get PDF
    A single type of data store can hardly fulfill every end-user requirements in the NoSQL world. Therefore, polyglot systems use different types of NoSQL datastores in combination. However, the heterogeneity of the data storage models makes managing the metadata a complex task in such systems, with only a handful of research carried out to address this. In this paper, we propose a hypergraph-based approach for representing the catalog of metadata in a polyglot system. Taking an existing common programming interface to NoSQL systems, we extend and formalize it as hypergraphs for managing metadata. Then, we define design constraints and query transformation rules for three representative data store types. Furthermore, we propose a simple query rewriting algorithm using the catalog itself for these data store types and provide a prototype implementation. Finally, we show the feasibility of our approach on a use case of an existing polyglot system.Peer ReviewedPostprint (author's final draft

    A Formal Executable Semantics of Verilog

    Get PDF
    This paper describes a formal executable semantics for the Verilog hardware description language. The goal of our formalization is to provide a concise and mathematically rigorous reference augmenting the prose of the official language standard, and ultimately to aid developers of Verilog-based tools; e.g., simulators, test generators, and verification tools. Our semantics applies equally well to both synthesizeable and behavioral designs and is given in a familiar, operational-style within a logic providing important additional benefits above and beyond static formalization. In particular, it is executable and searchable so that one can ask questions about how a, possibly nondeterministic, Verilog program can legally behave under the formalization. The formalization should not be seen as the final word on Verilog, but rather as a starting point and basis for community discussions on the Verilog semantics.CCF-0916893CNS-0720512CCF-0905584CCF-0448501NNL08AA23Cunpublishedis peer reviewe

    A Symbolic Transformation Language and its Application to a Multiscale Method

    Get PDF
    The context of this work is the design of a software, called MEMSALab, dedicated to the automatic derivation of multiscale models of arrays of micro- and nanosystems. In this domain a model is a partial differential equation. Multiscale methods approximate it by another partial differential equation which can be numerically simulated in a reasonable time. The challenge consists in taking into account a wide range of geometries combining thin and periodic structures with the possibility of multiple nested scales. In this paper we present a transformation language that will make the development of MEMSALab more feasible. It is proposed as a Maple package for rule-based programming, rewriting strategies and their combination with standard Maple code. We illustrate the practical interest of this language by using it to encode two examples of multiscale derivations, namely the two-scale limit of the derivative operator and the two-scale model of the stationary heat equation.Comment: 36 page

    Efficient Dynamic Access Analysis Using JavaScript Proxies

    Full text link
    JSConTest introduced the notions of effect monitoring and dynamic effect inference for JavaScript. It enables the description of effects with path specifications resembling regular expressions. It is implemented by an offline source code transformation. To overcome the limitations of the JSConTest implementation, we redesigned and reimplemented effect monitoring by taking advantange of JavaScript proxies. Our new design avoids all drawbacks of the prior implementation. It guarantees full interposition; it is not restricted to a subset of JavaScript; it is self-maintaining; and its scalability to large programs is significantly better than with JSConTest. The improved scalability has two sources. First, the reimplementation is significantly faster than the original, transformation-based implementation. Second, the reimplementation relies on the fly-weight pattern and on trace reduction to conserve memory. Only the combination of these techniques enables monitoring and inference for large programs.Comment: Technical Repor

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596
    corecore