2,288 research outputs found

    Soundly Handling Static Fields: Issues, Semantics and Analysis

    Get PDF
    Although in most cases class initialization works as expected, some static fields may be read before being initialized, despite being initialized in their corresponding class initializer. We propose an analysis which compute, for each program point, the set of static fields that must have been initialized and discuss its soundness. We show that such an analysis can be directly applied to identify the static fields that may be read before being initialized and to improve the precision while preserving the soundness of a null-pointer analysis.Comment: Proceedings of the Fourth Workshop on Bytecode Semantics, Verification, Analysis and Transformation (BYTECODE 2009

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    A new model for solution of complex distributed constrained problems

    Full text link
    In this paper we describe an original computational model for solving different types of Distributed Constraint Satisfaction Problems (DCSP). The proposed model is called Controller-Agents for Constraints Solving (CACS). This model is intended to be used which is an emerged field from the integration between two paradigms of different nature: Multi-Agent Systems (MAS) and the Constraint Satisfaction Problem paradigm (CSP) where all constraints are treated in central manner as a black-box. This model allows grouping constraints to form a subset that will be treated together as a local problem inside the controller. Using this model allows also handling non-binary constraints easily and directly so that no translating of constraints into binary ones is needed. This paper presents the implementation outlines of a prototype of DCSP solver, its usage methodology and overview of the CACS application for timetabling problems

    CODEWEAVE: exploring fine-grained mobility of code

    Get PDF
    This paper is concerned with an abstract exploration of code mobility constructs designed for use in settings where the level of granularity associated with the mobile units exhibits significant variability. Units of mobility that are both finer and coarser grained than the unit of execution are examined. To accomplish this, we take the extreme view that every line of code and every variable declaration are potentially mobile, i.e., it may be duplicated or moved from one program context to another on the same host or across the network. We also assume that complex code assemblies may move with equal ease. The result is CODEWEAVE, a model that shows how to develop new forms of code mobility, assign them precise meaning, and facilitate formal verification of programs employing them. The design of CODEWEAVE relies greatly on Mobile UNITY, a notation and proof logic for mobile computing. Mobile UNITY offers a computational milieu for examining a wide range of constructs and semantic alternatives in a clean abstract setting, i.e., unconstrained by compilation and performance considerations traditionally associated with programming language design. Ultimately, the notation offered by CODEWEAVE is given exact semantic definition by means of a direct mapping to the underlying Mobile UNITY model. The abstract and formal treatment of code mobility offered by CODEWEAVE establishes a technical foundation for examining competing proposals and for subsequent integration of some of the mobility constructs both at the language level and within middleware for mobility

    Automatically Securing Permission-Based Software by Reducing the Attack Surface: An Application to Android

    Get PDF
    A common security architecture, called the permission-based security model (used e.g. in Android and Blackberry), entails intrinsic risks. For instance, applications can be granted more permissions than they actually need, what we call a "permission gap". Malware can leverage the unused permissions for achieving their malicious goals, for instance using code injection. In this paper, we present an approach to detecting permission gaps using static analysis. Our prototype implementation in the context of Android shows that the static analysis must take into account a significant amount of platform-specific knowledge. Using our tool on two datasets of Android applications, we found out that a non negligible part of applications suffers from permission gaps, i.e. does not use all the permissions they declare
    • …
    corecore