310,956 research outputs found

    Comment on "Remark on the external-field method in QCD sum rules"

    Get PDF
    It is proved, that suggested by Jin modified formalism in the external-field method in QCD sum rules exactly coincides with the formalism used before. Therefore, unlike the claims of ref.1, this formalism cannot improve the predictability and reliability of external-field sum rule calculations in comparison with those, done by the standard approach. PACS number(s): 12.38.Lg, 11.55.HxComment: 5 pages, RevTe

    Background field method, Batalin-Vilkovisky formalism and parametric completeness of renormalization

    Full text link
    We investigate the background field method with the Batalin-Vilkovisky formalism, to generalize known results, study parametric completeness and achieve a better understanding of several properties. In particular, we study renormalization and gauge dependence to all orders. Switching between the background field approach and the usual approach by means of canonical transformations, we prove parametric completeness without making use of cohomological theorems, namely show that if the starting classical action is sufficiently general all divergences can be subtracted by means of parameter redefinitions and canonical transformations. Our approach applies to renormalizable and non-renormalizable theories that are manifestly free of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducible and closes off shell, the gauge transformations are linear functions of the fields, and closure is field-independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included, as well as effective and higher-derivative versions of them, but several other theories, such as supergravity, are left out.Comment: 40 pages; v2: minor changes, PRD versio

    LDA+Gutzwiller Method for Correlated Electron Systems: Formalism and Its Applications

    Full text link
    We introduce in detail our newly developed \textit{ab initio} LDA+Gutzwiller method, in which the Gutzwiller variational approach is naturally incorporated with the density functional theory (DFT) through the "Gutzwiller density functional theory (GDFT)" (which is a generalization of original Kohn-Sham formalism). This method can be used for ground state determination of electron systems ranging from weakly correlated metal to strongly correlated insulators with long-range ordering. We will show that its quality for ground state is as high as that by dynamic mean field theory (DMFT), and yet it is computationally much cheaper. In additions, the method is fully variational, the charge-density self-consistency can be naturally achieved, and the quantities, such as total energy, linear response, can be accurately obtained similar to LDA-type calculations. Applications on several typical systems are presented, and the characteristic aspects of this new method are clarified. The obtained results using LDA+Gutzwiller are in better agreement with existing experiments, suggesting significant improvements over LDA or LDA+U.Comment: 20 pages, 11 figure

    Spin dependent electron transport through a magnetic resonant tunneling diode

    Get PDF
    Electron transport properties in nanostructures can be modeled, for example, by using the semiclassical Wigner formalism or the quantum mechanical Green's functions formalism. We compare the performance and the results of these methods in the case of magnetic resonant-tunneling diodes. We have implemented the two methods within the self-consistent spin-density-functional theory. Our numerical implementation of the Wigner formalism is based on the finite-difference scheme whereas for the Green's function formalism the finite-element method is used. As a specific application, we consider the device studied by Slobodskyy et all. [Phys. Rev. Lett. 90, 246601 (2003)] and analyze their experimental results. The Wigner and Green's functions formalisms give similar electron densities and potentials but, surprisingly, the former method requires much more computer resources in order to obtain numerically accurate results for currents. Both of the formalisms can successfully be used to model magnetic resonant tunneling diode structures.Comment: 13 pages and 12 figure

    Hamiltonian construction of W-gravity actions

    Full text link
    We show that all W-gravity actions can be easilly constructed and understood from the point of view of the Hamiltonian formalism for the constrained systems. This formalism also gives a method of constructing gauge invariant actions for arbitrary conformally extended algebras.Comment: 9 page

    How to Solve Quantum Nonlinear Abelian Gauge Theory in Two Dimension in the Heisenberg Picture

    Get PDF
    The new method based on the operator formalism proposed by Abe and Nakanishi is applied to the quantum nonlinear abelian gauge theory in two dimension. The soluble models in this method are extended to wider class of quantum field theories. We obtain the exact solution in the canonical-quantization operator formalism in the Heisenberg picture. So this analysis might shed some light on the analysis of gravitational theory and non-polynomial field theories.Comment: LaTeX, 12 pages, to be published in IJMP
    corecore