1,675 research outputs found

    Coinductive Formal Reasoning in Exact Real Arithmetic

    Full text link
    In this article we present a method for formally proving the correctness of the lazy algorithms for computing homographic and quadratic transformations -- of which field operations are special cases-- on a representation of real numbers by coinductive streams. The algorithms work on coinductive stream of M\"{o}bius maps and form the basis of the Edalat--Potts exact real arithmetic. We use the machinery of the Coq proof assistant for the coinductive types to present the formalisation. The formalised algorithms are only partially productive, i.e., they do not output provably infinite streams for all possible inputs. We show how to deal with this partiality in the presence of syntactic restrictions posed by the constructive type theory of Coq. Furthermore we show that the type theoretic techniques that we develop are compatible with the semantics of the algorithms as continuous maps on real numbers. The resulting Coq formalisation is available for public download.Comment: 40 page

    Inductive and Coinductive Components of Corecursive Functions in Coq

    Get PDF
    In Constructive Type Theory, recursive and corecursive definitions are subject to syntactic restrictions which guarantee termination for recursive functions and productivity for corecursive functions. However, many terminating and productive functions do not pass the syntactic tests. Bove proposed in her thesis an elegant reformulation of the method of accessibility predicates that widens the range of terminative recursive functions formalisable in Constructive Type Theory. In this paper, we pursue the same goal for productive corecursive functions. Notably, our method of formalisation of coinductive definitions of productive functions in Coq requires not only the use of ad-hoc predicates, but also a systematic algorithm that separates the inductive and coinductive parts of functions.Comment: Dans Coalgebraic Methods in Computer Science (2008

    Theorem of three circles in Coq

    Full text link
    The theorem of three circles in real algebraic geometry guarantees the termination and correctness of an algorithm of isolating real roots of a univariate polynomial. The main idea of its proof is to consider polynomials whose roots belong to a certain area of the complex plane delimited by straight lines. After applying a transformation involving inversion this area is mapped to an area delimited by circles. We provide a formalisation of this rather geometric proof in Ssreflect, an extension of the proof assistant Coq, providing versatile algebraic tools. They allow us to formalise the proof from an algebraic point of view.Comment: 27 pages, 5 figure

    Computing with Classical Real Numbers

    Get PDF
    There are two incompatible Coq libraries that have a theory of the real numbers; the Coq standard library gives an axiomatic treatment of classical real numbers, while the CoRN library from Nijmegen defines constructively valid real numbers. Unfortunately, this means results about one structure cannot easily be used in the other structure. We present a way interfacing these two libraries by showing that their real number structures are isomorphic assuming the classical axioms already present in the standard library reals. This allows us to use O'Connor's decision procedure for solving ground inequalities present in CoRN to solve inequalities about the reals from the Coq standard library, and it allows theorems from the Coq standard library to apply to problem about the CoRN reals

    Affine functions and series with co-inductive real numbers

    Get PDF
    We extend the work of A. Ciaffaglione and P. Di Gianantonio on mechanical verification of algorithms for exact computation on real numbers, using infinite streams of digits implemented as co-inductive types. Four aspects are studied: the first aspect concerns the proof that digit streams can be related to the axiomatized real numbers that are already axiomatized in the proof system (axiomatized, but with no fixed representation). The second aspect re-visits the definition of an addition function, looking at techniques to let the proof search mechanism perform the effective construction of an algorithm that is correct by construction. The third aspect concerns the definition of a function to compute affine formulas with positive rational coefficients. This should be understood as a testbed to describe a technique to combine co-recursion and recursion to obtain a model for an algorithm that appears at first sight to be outside the expressive power allowed by the proof system. The fourth aspect concerns the definition of a function to compute series, with an application on the series that is used to compute Euler's number e. All these experiments should be reproducible in any proof system that supports co-inductive types, co-recursion and general forms of terminating recursion, but we performed with the Coq system [12, 3, 14]

    An equivalence between inverse sumset theorems and inverse conjectures for the U^3 norm

    Full text link
    We establish a correspondence between inverse sumset theorems (which can be viewed as classifications of approximate (abelian) groups) and inverse theorems for the Gowers norms (which can be viewed as classifications of approximate polynomials). In particular, we show that the inverse sumset theorems of Freiman type are equivalent to the known inverse results for the Gowers U^3 norms, and moreover that the conjectured polynomial strengthening of the former is also equivalent to the polynomial strengthening of the latter. We establish this equivalence in two model settings, namely that of the finite field vector spaces F_2^n, and of the cyclic groups Z/NZ. In both cases the argument involves clarifying the structure of certain types of approximate homomorphism.Comment: 23 page
    corecore