67,340 research outputs found

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Contracts and Behavioral Patterns for SoS: The EU IP DANSE approach

    Full text link
    This paper presents some of the results of the first year of DANSE, one of the first EU IP projects dedicated to SoS. Concretely, we offer a tool chain that allows to specify SoS and SoS requirements at high level, and analyse them using powerful toolsets coming from the formal verification area. At the high level, we use UPDM, the system model provided by the british army as well as a new type of contract based on behavioral patterns. At low level, we rely on a powerful simulation toolset combined with recent advances from the area of statistical model checking. The approach has been applied to a case study developed at EADS Innovation Works.Comment: In Proceedings AiSoS 2013, arXiv:1311.319

    An experimental Study using ACSL and Frama-C to formulate and verify Low-Level Requirements from a DO-178C compliant Avionics Project

    Full text link
    Safety critical avionics software is a natural application area for formal verification. This is reflected in the formal method's inclusion into the certification guideline DO-178C and its formal methods supplement DO-333. Airbus and Dassault-Aviation, for example, have conducted studies in using formal verification. A large German national research project, Verisoft XT, also examined the application of formal methods in the avionics domain. However, formal methods are not yet mainstream, and it is questionable if formal verification, especially formal deduction, can be integrated into the software development processes of a resource constrained small or medium enterprise (SME). ESG, a Munich based medium sized company, has conducted a small experimental study on the application of formal verification on a small portion of a real avionics project. The low level specification of a software function was formalized with ACSL, and the corresponding source code was partially verified using Frama-C and the WP plugin, with Alt-Ergo as automated prover. We established a couple of criteria which a method should meet to be fit for purpose for industrial use in SME, and evaluated these criteria with the experience gathered by using ACSL with Frama-C on a real world example. The paper reports on the results of this study but also highlights some issues regarding the method in general which, in our view, will typically arise when using the method in the domain of embedded real-time programming.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Transformation of UML Behavioral Diagrams to Support Software Model Checking

    Get PDF
    Unified Modeling Language (UML) is currently accepted as the standard for modeling (object-oriented) software, and its use is increasing in the aerospace industry. Verification and Validation of complex software developed according to UML is not trivial due to complexity of the software itself, and the several different UML models/diagrams that can be used to model behavior and structure of the software. This paper presents an approach to transform up to three different UML behavioral diagrams (sequence, behavioral state machines, and activity) into a single Transition System to support Model Checking of software developed in accordance with UML. In our approach, properties are formalized based on use case descriptions. The transformation is done for the NuSMV model checker, but we see the possibility in using other model checkers, such as SPIN. The main contribution of our work is the transformation of a non-formal language (UML) to a formal language (language of the NuSMV model checker) towards a greater adoption in practice of formal methods in software development.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    IEEE Standard 1500 Compliance Verification for Embedded Cores

    Get PDF
    Core-based design and reuse are the two key elements for an efficient system-on-chip (SoC) development. Unfortunately, they also introduce new challenges in SoC testing, such as core test reuse and the need of a common test infrastructure working with cores originating from different vendors. The IEEE 1500 Standard for Embedded Core Testing addresses these issues by proposing a flexible hardware test wrapper architecture for embedded cores, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Several intellectual property providers have already announced IEEE Standard 1500 compliance in both existing and future design blocks. In this paper, we address the problem of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE Standard 1500. This step is mandatory to fully trust the wrapper functionalities in applying the test sequences to the core. We present a systematic methodology to build a verification framework for IEEE Standard 1500 compliant cores, allowing core providers and/or integrators to verify the compliance of their products (sold or purchased) to the standar
    corecore