972 research outputs found

    Interpreted graph models

    Get PDF
    A model class called an Interpreted Graph Model (IGM) is defined. This class includes a large number of graph-based models that are used in asynchronous circuit design and other applications of concurrecy. The defining characteristic of this model class is an underlying static graph-like structure where behavioural semantics are attached using additional entities, such as tokens or node/arc states. The similarities in notation and expressive power allow a number of operations on these formalisms, such as visualisation, interactive simulation, serialisation, schematic entry and model conversion to be generalised. A software framework called Workcraft was developed to take advantage of these properties of IGMs. Workcraft provides an environment for rapid prototyping of graph-like models and related tools. It provides a large set of standardised functions that considerably facilitate the task of providing tool support for any IGM. The concept of Interpreted Graph Models is the result of research on methods of application of lower level models, such as Petri nets, as a back-end for simulation and verification of higher level models that are more easily manipulated. The goal is to achieve a high degree of automation of this process. In particular, a method for verification of speed-independence of asynchronous circuits is presented. Using this method, the circuit is specified as a gate netlist and its environment is specified as a Signal Transition Graph. The circuit is then automatically translated into a behaviourally equivalent Petri net model. This model is then composed with the specification of the environment. A number of important properties can be established on this compound model, such as the absence of deadlocks and hazards. If a trace is found that violates the required property, it is automatically interpreted in terms of switching of the gates in the original gate-level circuit specification and may be presented visually to the circuit designer. A similar technique is also used for the verification of a model called Static Data Flow Structure (SDFS). This high level model describes the behaviour of an asynchronous data path. SDFS is particularly interesting because it models complex behaviours such as preemption, early evaluation and speculation. Preemption is a technique which allows to destroy data objects in a computation pipeline if the result of computation is no longer needed, reducing the power consumption. Early evaluation allows a circuit to compute the output using a subset of its inputs and preempting the inputs which are not needed. In speculation, all conflicting branches of computation run concurrently without waiting for the selecting condition; once the selecting condition is computed the unneeded branches are preempted. The automated Petri net based verification technique is especially useful in this case because of the complex nature of these features. As a result of this work, a number of cases are presented where the concept of IGMs and the Workcraft tool were instrumental. These include the design of two different types of arbiter circuits, the design and debugging of the SDFS model, synthesis of asynchronous circuits from the Conditional Partial Order Graph model and the modification of the workflow of Balsa asynchronous circuit synthesis system.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Efficient Analysis and Synthesis of Complex Quantitative Systems

    Get PDF

    Verification and synthesis of asynchronous control circuits using petri net unfoldings

    Get PDF
    PhD ThesisDesign of asynchronous control circuits has traditionally been associated with application of formal methods. Event-based models, such as Petri nets, provide a compact and easy to understand way of specifying asynchronous behaviour. However, analysis of their behavioural properties is often hindered by the problem of exponential growth of reachable state space. This work proposes a new method for analysis of asynchronous circuit models based on Petri nets. The new approach is called PN-unfolding segment. It extends and improves existing Petri nets unfolding approaches. In addition, this thesis proposes a new analysis technique for Signal Transition Graphs along with an efficient verification technique which is also based on the Petri net unfolding. The former is called Full State Graph, the latter - STG-unfolding segment. The boolean logic synthesis is an integral part of the asynchronous circuit design process. In many cases, even if the verification of an asynchronous circuit specification has been performed successfully, it is impossible to obtain its implementation using existing methods because they are based on the reachability analysis. A new approach is proposed here for automated synthesis of speed-independent circuits based on the STG-unfolding segment constructed during the verification of the circuit's specification. Finally, this work presents experimental results showing the need for the new Petri net unfolding techniques and confirming the advantages of application of partial order approach to analysis, verification and synthesis of asynchronous circuits.The Research Committee, Newcastle University: Overseas Research Studentship Award

    Dataflow computers: a tutorial and survey

    Get PDF
    Journal ArticleThe demand for very high performance computer has encouraged some researchers in the computer science field to consider alternatives to the conventional notions of program and computer organization. The dataflow computer is one attempt to form a new collection of consistent systems ideas to improve both computer performance and to alleviate the software design problems induced by the construction of highly concurrent programs

    A unified view of parameterized verification of abstract models of broadcast communication

    Get PDF
    We give a unified view of different parameterized models of concurrent and distributed systems with broadcast communication based on transition systems. Based on the resulting formal models, we discuss related verification methods and tools based on abstractions and symbolic state exploration

    Parameterized verification

    Get PDF
    The goal of parameterized verification is to prove the correctness of a system specification regardless of the number of its components. The problem is of interest in several different areas: verification of hardware design, multithreaded programs, distributed systems, and communication protocols. The problem is undecidable in general. Solutions for restricted classes of systems and properties have been studied in areas like theorem proving, model checking, automata and logic, process algebra, and constraint solving. In this introduction to the special issue, dedicated to a selection of works from the Parameterized Verification workshop PV \u201914 and PV \u201915, we survey some of the works developed in this research area

    Modelling parallel and distributed virtual reality systems for performance analysis and comparison

    Get PDF
    Most Virtual Reality systems employ some form of parallel processing, making use of multiple processors which are often distributed over large areas geographically, and which communicate via various forms of message passing. The approaches to parallel decomposition differ for each system, as do the performance implications of each approach. Previous comparisons have only identified and categorized the different approaches. None have examined the performance issues involved in the different parallel decompositions. Performance measurement for a Virtual Reality system differs from that of other parallel systems in that some measure of the delays involved with the interaction of the separate components is required, in addition to the measure of the throughput of the system. Existing performance analysis approaches are typically not well suited to providing both these measures. This thesis describes the development of a performance analysis technique that is able to provide measures of both interaction latency and cycle time for a model of a Virtual Reality system. This technique allows performance measures to be generated as symbolic expressions describing the relationships between the delays in the model. It automatically generates constraint regions, specifying the values of the system parameters for which performance characteristics change. The performance analysis technique shows strong agreement with values measured from implementation of three common decomposition strategies on two message passing architectures. The technique is successfully applied to a range of parallel decomposition strategies found in Parallel and Distributed Virtual Reality systems. For each system, the primary decomposition techniques are isolated and analysed to determine their performance characteristics. This analysis allows a comparison of the various decomposition techniques, and in many cases reveals trends in their behaviour that would have gone unnoticed with alternative analysis techniques. The work described in this thesis supports the Performance Analysis and Comparison of Parallel and Distributed Virtual Reality systems. In addition it acts as a reference, describing the performance characteristics of decomposition strategies used in Virtual Reality systems

    Model-driven development of data intensive applications over cloud resources

    Get PDF
    The proliferation of sensors over the last years has generated large amounts of raw data, forming data streams that need to be processed. In many cases, cloud resources are used for such processing, exploiting their flexibility, but these sensor streaming applications often need to support operational and control actions that have real-time and low-latency requirements that go beyond the cost effective and flexible solutions supported by existing cloud frameworks, such as Apache Kafka, Apache Spark Streaming, or Map-Reduce Streams. In this paper, we describe a model-driven and stepwise refinement methodological approach for streaming applications executed over clouds. The central role is assigned to a set of Petri Net models for specifying functional and non-functional requirements. They support model reuse, and a way to combine formal analysis, simulation, and approximate computation of minimal and maximal boundaries of non-functional requirements when the problem is either mathematically or computationally intractable. We show how our proposal can assist developers in their design and implementation decisions from a performance perspective. Our methodology allows to conduct performance analysis: The methodology is intended for all the engineering process stages, and we can (i) analyse how it can be mapped onto cloud resources, and (ii) obtain key performance indicators, including throughput or economic cost, so that developers are assisted in their development tasks and in their decision taking. In order to illustrate our approach, we make use of the pipelined wavefront array

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version
    corecore