51,195 research outputs found

    Formal verification of a theory of packages

    Get PDF
    Over the years, open source distributions have become increasingly largeand complex—as an example, the latest Debian distribution contains almost 30 000packages.Consequently, the tools that deal with these distribution have also become more andmore complex. Furthermore, to deal with increasing distribution sizes optimisationhas become more important as well.To make sure that correctness is not sacrificed for complexity and optimisation, it isimportant to verify the underlying assumptions formally.In this paper, we present an example of such a verification: a formalisation in Coqof a theory of packages and their interdependencies

    Determining the quality of mathematical software using reference data sets

    Get PDF
    This paper describes a methodology for evaluating the numerical accuracy of software that performs mathematical calculations. The authors explain how this methodology extends the concept of metrological traceability, which is fundamental to measurement, to include software quality. Overviews of two European Union-funded projects are also presented. The first project developed an infrastructure to allow software to be verified by testing, via the internet, using reference data sets. The primary focus of the project was software used within systems that make physical measurements. The second project, currently underway, explores using this infrastructure to verify mathematical software used within general scientific and engineering disciplines. Publications on using reference data sets for the verification of mathematical software are usually intended for a readership specialising in measurement science or mathematics. This paper is aimed at a more general readership, in particular software quality specialists and computer scientists. Further engagement with experts in these disciplines will be helpful to the continued development of this application of software quality

    Development and Verification of a Flight Stack for a High-Altitude Glider in Ada/SPARK 2014

    Full text link
    SPARK 2014 is a modern programming language and a new state-of-the-art tool set for development and verification of high-integrity software. In this paper, we explore the capabilities and limitations of its latest version in the context of building a flight stack for a high-altitude unmanned glider. Towards that, we deliberately applied static analysis early and continuously during implementation, to give verification the possibility to steer the software design. In this process we have identified several limitations and pitfalls of software design and verification in SPARK, for which we give workarounds and protective actions to avoid them. Finally, we give design recommendations that have proven effective for verification, and summarize our experiences with this new language

    Testing M2T/T2M Transformations

    Get PDF
    Presentado en: 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013). Del 29 de septiembre al 4 de octubre. Miami, EEUU.Testing model-to-model (M2M) transformations is becoming a prominent topic in the current Model-driven Engineering landscape. Current approaches for transformation testing, however, assume having explicit model representations for the input domain and for the output domain of the transformation. This excludes other important transformation kinds, such as model-to-text (M2T) and text-to-model (T2M) transformations, from being properly tested since adequate model representations are missing either for the input domain or for the output domain. The contribution of this paper to overcome this gap is extending Tracts, a M2M transformation testing approach, for M2T/T2M transformation testing. The main mechanism we employ for reusing Tracts is to represent text within a generic metamodel. By this, we transform the M2T/T2M transformation specification problems into equivalent M2M transformation specification problems. We demonstrate the applicability of the approach by two examples and present how the approach is implemented for the Eclipse Modeling Framework (EMF). Finally, we apply the approach to evaluate code generation capabilities of several existing UML tools.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto TIN2011-2379

    A conceptual model for megaprogramming

    Get PDF
    Megaprogramming is component-based software engineering and life-cycle management. Magaprogramming and its relationship to other research initiatives (common prototyping system/common prototyping language, domain specific software architectures, and software understanding) are analyzed. The desirable attributes of megaprogramming software components are identified and a software development model and resulting prototype megaprogramming system (library interconnection language extended by annotated Ada) are described

    Rehearsal: A Configuration Verification Tool for Puppet

    Full text link
    Large-scale data centers and cloud computing have turned system configuration into a challenging problem. Several widely-publicized outages have been blamed not on software bugs, but on configuration bugs. To cope, thousands of organizations use system configuration languages to manage their computing infrastructure. Of these, Puppet is the most widely used with thousands of paying customers and many more open-source users. The heart of Puppet is a domain-specific language that describes the state of a system. Puppet already performs some basic static checks, but they only prevent a narrow range of errors. Furthermore, testing is ineffective because many errors are only triggered under specific machine states that are difficult to predict and reproduce. With several examples, we show that a key problem with Puppet is that configurations can be non-deterministic. This paper presents Rehearsal, a verification tool for Puppet configurations. Rehearsal implements a sound, complete, and scalable determinacy analysis for Puppet. To develop it, we (1) present a formal semantics for Puppet, (2) use several analyses to shrink our models to a tractable size, and (3) frame determinism-checking as decidable formulas for an SMT solver. Rehearsal then leverages the determinacy analysis to check other important properties, such as idempotency. Finally, we apply Rehearsal to several real-world Puppet configurations.Comment: In proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) 201

    Industrial-Strength Documentation for ACL2

    Full text link
    The ACL2 theorem prover is a complex system. Its libraries are vast. Industrial verification efforts may extend this base with hundreds of thousands of lines of additional modeling tools, specifications, and proof scripts. High quality documentation is vital for teams that are working together on projects of this scale. We have developed XDOC, a flexible, scalable documentation tool for ACL2 that can incorporate the documentation for ACL2 itself, the Community Books, and an organization's internal formal verification projects, and which has many features that help to keep the resulting manuals up to date. Using this tool, we have produced a comprehensive, publicly available ACL2+Books Manual that brings better documentation to all ACL2 users. We have also developed an extended manual for use within Centaur Technology that extends the public manual to cover Centaur's internal books. We expect that other organizations using ACL2 will wish to develop similarly extended manuals.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    Runtime Verification Based on Executable Models: On-the-Fly Matching of Timed Traces

    Full text link
    Runtime verification is checking whether a system execution satisfies or violates a given correctness property. A procedure that automatically, and typically on the fly, verifies conformance of the system's behavior to the specified property is called a monitor. Nowadays, a variety of formalisms are used to express properties on observed behavior of computer systems, and a lot of methods have been proposed to construct monitors. However, it is a frequent situation when advanced formalisms and methods are not needed, because an executable model of the system is available. The original purpose and structure of the model are out of importance; rather what is required is that the system and its model have similar sets of interfaces. In this case, monitoring is carried out as follows. Two "black boxes", the system and its reference model, are executed in parallel and stimulated with the same input sequences; the monitor dynamically captures their output traces and tries to match them. The main problem is that a model is usually more abstract than the real system, both in terms of functionality and timing. Therefore, trace-to-trace matching is not straightforward and allows the system to produce events in different order or even miss some of them. The paper studies on-the-fly conformance relations for timed systems (i.e., systems whose inputs and outputs are distributed along the time axis). It also suggests a practice-oriented methodology for creating and configuring monitors for timed systems based on executable models. The methodology has been successfully applied to a number of industrial projects of simulation-based hardware verification.Comment: In Proceedings MBT 2013, arXiv:1303.037
    • …
    corecore