30,330 research outputs found

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    Automated verification of model transformations based on visual contracts

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10515-012-0102-yModel-Driven Engineering promotes the use of models to conduct the different phases of the software development. In this way, models are transformed between different languages and notations until code is generated for the final application. Hence, the construction of correct Model-to-Model (M2M) transformations becomes a crucial aspect in this approach. Even though many languages and tools have been proposed to build and execute M2M transformations, there is scarce support to specify correctness requirements for such transformations in an implementation-independent way, i.e., irrespective of the actual transformation language used. In this paper we fill this gap by proposing a declarative language for the specification of visual contracts, enabling the verification of transformations defined with any transformation language. The verification is performed by compiling the contracts into QVT to detect disconformities of transformation results with respect to the contracts. As a proof of concept, we also report on a graphical modeling environment for the specification of contracts, and on its use for the verification of transformations in several case studies.This work has been funded by the Austrian Science Fund (FWF) under grant P21374-N13, the Spanish Ministry of Science under grants TIN2008-02081 and TIN2011-24139, and the R&D programme of the Madrid Region under project S2009/TIC-1650

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation

    Model Coupling between the Weather Research and Forecasting Model and the DPRI Large Eddy Simulator for Urban Flows on GPU-accelerated Multicore Systems

    Full text link
    In this report we present a novel approach to model coupling for shared-memory multicore systems hosting OpenCL-compliant accelerators, which we call The Glasgow Model Coupling Framework (GMCF). We discuss the implementation of a prototype of GMCF and its application to coupling the Weather Research and Forecasting Model and an OpenCL-accelerated version of the Large Eddy Simulator for Urban Flows (LES) developed at DPRI. The first stage of this work concerned the OpenCL port of the LES. The methodology used for the OpenCL port is a combination of automated analysis and code generation and rule-based manual parallelization. For the evaluation, the non-OpenCL LES code was compiled using gfortran, fort and pgfortran}, in each case with auto-parallelization and auto-vectorization. The OpenCL-accelerated version of the LES achieves a 7 times speed-up on a NVIDIA GeForce GTX 480 GPGPU, compared to the fastest possible compilation of the original code running on a 12-core Intel Xeon E5-2640. In the second stage of this work, we built the Glasgow Model Coupling Framework and successfully used it to couple an OpenMP-parallelized WRF instance with an OpenCL LES instance which runs the LES code on the GPGPI. The system requires only very minimal changes to the original code. The report discusses the rationale, aims, approach and implementation details of this work.Comment: This work was conducted during a research visit at the Disaster Prevention Research Institute of Kyoto University, supported by an EPSRC Overseas Travel Grant, EP/L026201/

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context
    corecore