47,666 research outputs found

    The parser generator as a general purpose tool

    Get PDF
    The parser generator has proven to be an extremely useful, general purpose tool. It can be used effectively by programmers having only a knowledge of grammars and no training at all in the theory of formal parsing. Some of the application areas for which a table-driven parser can be used include interactive, query languages, menu systems, translators, and programming support tools. Each of these is illustrated by an example grammar

    Reading Between the Lines: Verifying Mathematical Language

    Get PDF
    A great deal of work has been done on automatically generating automated proofs of formal statements. However, these systems tend to focus on logic-oriented statements and tactics as well as generating proofs in formal language. This project examines proofs written in natural language under a more general scope of mathematics. Furthermore, rather than attempting to generate natural language proofs for the purpose of solving problems, we automatically verify human-written proofs in natural language. To accomplish this, elements of discourse parsing, semantic interpretation, and application of an automated theorem prover are implemented

    Open-Vocabulary Semantic Parsing with both Distributional Statistics and Formal Knowledge

    Full text link
    Traditional semantic parsers map language onto compositional, executable queries in a fixed schema. This mapping allows them to effectively leverage the information contained in large, formal knowledge bases (KBs, e.g., Freebase) to answer questions, but it is also fundamentally limiting---these semantic parsers can only assign meaning to language that falls within the KB's manually-produced schema. Recently proposed methods for open vocabulary semantic parsing overcome this limitation by learning execution models for arbitrary language, essentially using a text corpus as a kind of knowledge base. However, all prior approaches to open vocabulary semantic parsing replace a formal KB with textual information, making no use of the KB in their models. We show how to combine the disparate representations used by these two approaches, presenting for the first time a semantic parser that (1) produces compositional, executable representations of language, (2) can successfully leverage the information contained in both a formal KB and a large corpus, and (3) is not limited to the schema of the underlying KB. We demonstrate significantly improved performance over state-of-the-art baselines on an open-domain natural language question answering task.Comment: Re-written abstract and intro, other minor changes throughout. This version published at AAAI 201
    corecore