1,043,402 research outputs found

    Implementing Multi-Periodic Critical Systems: from Design to Code Generation

    Full text link
    This article presents a complete scheme for the development of Critical Embedded Systems with Multiple Real-Time Constraints. The system is programmed with a language that extends the synchronous approach with high-level real-time primitives. It enables to assemble in a modular and hierarchical manner several locally mono-periodic synchronous systems into a globally multi-periodic synchronous system. It also allows to specify flow latency constraints. A program is translated into a set of real-time tasks. The generated code (\C\ code) can be executed on a simple real-time platform with a dynamic-priority scheduler (EDF). The compilation process (each algorithm of the process, not the compiler itself) is formally proved correct, meaning that the generated code respects the real-time semantics of the original program (respect of periods, deadlines, release dates and precedences) as well as its functional semantics (respect of variable consumption).Comment: 15 pages, published in Workshop on Formal Methods for Aerospace (FMA'09), part of Formal Methods Week 2009

    Testing times: on model-driven test generation for non-deterministic real-time systems

    Get PDF
    Summary form only given. Although testing has always been the most important technique for the validation of software systems it has only become a topic of serious academic research in the past decade or so. In this period research on the use of formal methods for model-driven test generation and execution of functional test cases has led to a number of promising methods and tools for systematic black-box testing of systems, examples are based on A. Belinfante et al. (1999), J. Tretmans and E. Brinksma (2003), J.-C. Fernandez et al. (1996) and J.-C. Fernandez et al. (1997). Most of these approaches are limited to the qualitative behaviour of systems, and exclude quantitative aspects such as real-time properties. The explosive growth of embedded software, however, has also caused a growing need to extend existing testing theories to the testing of real-time reactive systems. In our presentation we present an extension of Tretmans' ioco theory for test generation as stated in J. Tretmans (1996) for input/output transition systems that includes real-time behaviour

    A Study of Realtime Summarization Metrics

    Get PDF
    Unexpected news events, such as natural disasters or other human tragedies, create a large volume of dynamic text data from official news media as well as less formal social media. Automatic real-time text summarization has become an important tool for quickly transforming this overabundance of text into clear, useful information for end-users including affected individuals, crisis responders, and interested third parties. Despite the importance of real-time summarization systems, their evaluation is not well understood as classic methods for text summarization are inappropriate for real-time and streaming conditions. The TREC 2013-2015 Temporal Summarization (TREC-TS) track was one of the first evaluation campaigns to tackle the challenges of real-time summarization evaluation, introducing new metrics, ground-truth generation methodology and dataset. In this paper, we present a study of TREC-TS track evaluation methodology, with the aim of documenting its design, analyzing its effectiveness, as well as identifying improvements and best practices for the evaluation of temporal summarization systems

    From AADL Model to LNT Specification

    Get PDF
    The verification of distributed real-time systems designed by architectural languages such as AADL (Architecture Analysis and Design Language) is a research challenge. These systems are often used in safety- critical domains where one mistake can result in physical damages and even life loss. In such domains, formal methods are a suitable solution for rigorous analysis. This paper studies the formal verification of distributed real-time systems modelled with AADL. We transform AADL model to another specification formalism enabling the verification. We choose LNT language which is an input to CADP toolbox for formal analysis. Then, we illustrate our approach with the ”Flight Control System” case study

    A Mechanized Semantic Framework for Real-Time Systems

    Get PDF
    International audienceConcurrent systems consist of many components which may execute in parallel and are complex to design, to analyze, to verify, and to implement. The complexity increases if the systems have real-time constraints, which are very useful in avionic, spatial and other kind of embedded applications. In this paper we present a logical framework for defining and validating real-time formalisms as well as reasoning methods over them. For this purpose, we have implemented in the Coq proof assistant well known semantic domains for real-time systems based on labelled transitions systems and timed runs. We experiment our framework by considering the real-time CSP-based language fiacre, which has been defined as a pivot formalism for modeling languages (aadl, sdl, ...) used in the TOPCASED project. Thus, we define an extension to the formal semantic models mentioned above that facilitates the modeling of fine-grained time constraints of fiacre. Finally, we implement this extension in our framework and provide a proof method environment to deal with real-time system in order to achieve their formal certification

    Agent Based Approaches to Engineering Autonomous Space Software

    Full text link
    Current approaches to the engineering of space software such as satellite control systems are based around the development of feedback controllers using packages such as MatLab's Simulink toolbox. These provide powerful tools for engineering real time systems that adapt to changes in the environment but are limited when the controller itself needs to be adapted. We are investigating ways in which ideas from temporal logics and agent programming can be integrated with the use of such control systems to provide a more powerful layer of autonomous decision making. This paper will discuss our initial approaches to the engineering of such systems.Comment: 3 pages, 1 Figure, Formal Methods in Aerospac

    A TLA+ Formal Specification and Verification of a New Real-Time Communication Protocol

    Get PDF
    AbstractWe describe the formal specification and verification of a new fault-tolerant real-time communication protocol, called DoRiS, which is designed for supporting distributed real-time systems that use a shared high-bandwidth medium. Since such a kind of protocol is reasonably complex and requires high levels of confidence on both timing and safety properties, formal methods are useful. Indeed, the design of DoRiS was strongly based on formal methods, where the TLA+ language and its associated model-checker TLC were the supporting design tool. The protocol conception was improved by using information provided by its formal specification and verification. In the end, a precise and highly reliable protocol description is provided
    • 

    corecore