8,938 research outputs found

    Artificial Intelligence Enabled Project Management: A Systematic Literature Review

    Get PDF
    In the Industry 5.0 era, companies are leveraging the potential of cutting-edge technologies such as artificial intelligence for more efficient and green human-centric production. In a similar approach, project management would benefit from artificial intelligence in order to achieve project goals by improving project performance, and consequently, reaching higher sustainable success. In this context, this paper examines the role of artificial intelligence in emerging project management through a systematic literature review; the applications of AI techniques in the project management performance domains are presented. The results show that the number of influential publications on artificial intelligence-enabled project management has increased significantly over the last decade. The findings indicate that artificial intelligence, predominantly machine learning, can be considerably useful in the management of construction and IT projects; it is notably encouraging for enhancing the planning, measurement, and uncertainty performance domains by providing promising forecasting and decision-making capabilities

    Software engineering for AI-based systems: A survey

    Get PDF
    AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.This work has been partially funded by the “Beatriz Galindo” Spanish Program BEAGAL18/00064 and by the DOGO4ML Spanish research project (ref. PID2020-117191RB-I00)Peer ReviewedPostprint (author's final draft

    Needs assessment final report

    Get PDF
    The stated purposes of the Management Science Faculty Fellowship Project were to: (1) provide a comprehensive analysis of KSC management training for engineers and other management professionals from project/program lead through executive levels; and (2) development of evaluation methodologies which can be used to perform ongoing program-wide course-to-course assessments. This report will focus primarily in the first stated purpose for the project. Ideally, the analysis of KSC management training will build in the current system and efficiently propose improvements to achieve existing goals and objectives while helping to identify new visions and new outcomes for the Center's Management Training Mission. Section 2 describes the objectives, approach, and specific tasks used to analyze KSC's Management training System. Section 3 discusses the main conclusions derived from an analysis of the available training data. Section 4 discusses the characteristics and benefits envisioned for a Management Training System. Section 5 proposes a Training System as identified by the results of a Needs Assessment exercise conducted at KSC this summer. Section 6 presents a number of recommendations for future work

    ICSEA 2022: the seventeenth international conference on software engineering advances

    Get PDF
    The Seventeenth International Conference on Software Engineering Advances (ICSEA 2022), held between October 16th and October 20th, 2022, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. Several tracks were proposed to treat the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learned. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. Other advanced aspects are related to on-time practical aspects, such as run-time vulnerability checking, rejuvenation process, updates partial or temporary feature deprecation, software deployment and configuration, and on-line software updates. These aspects trigger implications related to patenting, licensing, engineering education, new ways for software adoption and improvement, and ultimately, to software knowledge management. There are many advanced applications requiring robust, safe, and secure software: disaster recovery applications, vehicular systems, biomedical-related software, biometrics related software, mission critical software, E-health related software, crisis-situation software. These applications require appropriate software engineering techniques, metrics and formalisms, such as, software reuse, appropriate software quality metrics, composition and integration, consistency checking, model checking, provers and reasoning. The nature of research in software varies slightly with the specific discipline researchers work in, yet there is much common ground and room for a sharing of best practice, frameworks, tools, languages and methodologies. Despite the number of experts we have available, little work is done at the meta level, that is examining how we go about our research, and how this process can be improved. There are questions related to the choice of programming language, IDEs and documentation styles and standard. Reuse can be of great benefit to research projects yet reuse of prior research projects introduces special problems that need to be mitigated. The research environment is a mix of creativity and systematic approach which leads to a creative tension that needs to be managed or at least monitored. Much of the coding in any university is undertaken by research students or young researchers. Issues of skills training, development and quality control can have significant effects on an entire department. In an industrial research setting, the environment is not quite that of industry as a whole, nor does it follow the pattern set by the university. The unique approaches and issues of industrial research may hold lessons for researchers in other domains. We take here the opportunity to warmly thank all the members of the ICSEA 2022 technical program committee, as well as all the reviewers. The creation of such a high-quality conference program would not have been possible without their involvement. We also kindly thank all the authors who dedicated much of their time and effort to contribute to ICSEA 2022. We truly believe that, thanks to all these efforts, the final conference program consisted of top-quality contributions. We also thank the members of the ICSEA 2022 organizing committee for their help in handling the logistics of this event. We hope that ICSEA 2022 was a successful international forum for the exchange of ideas and results between academia and industry and for the promotion of progress in software engineering advances
    corecore