1,150 research outputs found

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Formal Verification and Validation of AADL Models

    Get PDF
    International audienceSafety-critical systems are increasingly difficult to com- prehend due to their rising complexity. Methodologies, tools and modeling formalisms have been developed to overcome this. Component-based design is an im- portant paradigm that is shared by many of them

    Identifying dependability requirements for space software systems

    Get PDF
    Computer systems are increasingly used in space, whether in launch vehicles, satellites, ground support and payload systems. Software applications used in these systems have become more complex, mainly due to the high number of features to be met, thus contributing to a greater probability of hazards related to software faults. Therefore, it is fundamental that the specification activity of requirements have a decisive role in the effort of obtaining systems with high quality and safety standards. In critical systems like the embedded software of the Brazilian Satellite Launcher, ambiguity, non-completeness, and lack of good requirements can cause serious accidents with economic, material and human losses. One way to assure quality with safety, reliability and other dependability attributes may be the use of safety analysis techniques during the initial phases of the project in order to identify the most adequate dependability requirements to minimize possible fault or failure occurrences during the subsequent phases. This paper presents a structured software dependability requirements analysis process that uses system software requirement specifications and traditional safety analysis techniques. The main goal of the process is to help to identify a set of essential software dependability requirements which can be added to the software requirement previously specified for the system. The final results are more complete, consistent, and reliable specifications

    Exploring AADL verification tool through model transformation

    Get PDF
    International audienceArchitecture Analysis and Design Language (AADL) is often used to model safety-critical real-time systems. Model transformation is widely used to extract a formal specification so that AADL models can be verified and analyzed by existing tools. Timed Abstract State Machine (TASM) is a formalism not only able to specify behavior and communication but also timing and resource aspects of the system. To verify functional and nonfunctional properties of AADL models, this paper presents a methodology for translating AADL to TASM. Our main contribution is to formally define the translation rules from an adequate subset of AADL (including thread component, port communication, behavior annex and mode change) into TASM. Based on these rules, a tool called AADL2TASM is implemented using Atlas Transformation Language (ATL). Finally, a case study from an actual data processing unit of a satellite is provided to validate the transformation and illustrate the practicality of the approach

    Using Assurance Cases and Boolean Logic Driven Markov Processes to Formalise Cyber Security Concerns for Safety-Critical Interaction with Global Navigation Satellite Systems

    Get PDF
    Satellite-based location and timing systems support a wide range of mass market applications, typically using the GPS infrastructure. Until recently, these applications could not be used within safety-critical interfaces. Limits to the accuracy, availability, integrity and continuity of the space-based signals prevented regulatory agencies from certifying their use. Over the last three months, however, the latest generation of augmented Global Navigation Satellite Systems (GNSS) have been approved for use in safety-related applications. They use a range of techniques to overcome the limitations of previous infrastructures. This means that they can be used as primary navigation tools in a wide range of interactive systems, including aircraft cockpits, railway signalling tools etc. Unfortunately, a range of organisations including the UK Ministry of Defence, have raised concerns about our increasing vulnerability to attacks on these satellite based architectures. These threats are compounded by the difficulty of representing and reasoning about the impact of jamming, spoofing and insider threats for the end-users of safety-critical systems. A sudden loss of navigational support can undermine users confidence in complex applications and pose a significant threat to distributed situation awareness. We show how formal reasoning techniques can be used to identify the safety and security concerns that jeopardise interaction with future generations of Global Navigation Satellite Systems applications

    Model Based Mission Assurance: NASA's Assurance Future

    Get PDF
    Model Based Systems Engineering (MBSE) is seeing increased application in planning and design of NASAs missions. This suggests the question: what will be the corresponding practice of Model Based Mission Assurance (MBMA)? Contemporaneously, NASAs Office of Safety and Mission Assurance (OSMA) is evaluating a new objectives based approach to standards to ensure that the Safety and Mission Assurance disciplines and programs are addressing the challenges of NASAs changing missions, acquisition and engineering practices, and technology. MBSE is a prominent example of a changing engineering practice. We use NASAs objectives-based strategy for Reliability and Maintainability as a means to examine how MBSE will affect assurance. We surveyed MBSE literature to look specifically for these affects, and find a variety of them discussed (some are anticipated, some are reported from applications to date). Predominantly these apply to the early stages of design, although there are also extrapolations of how MBSE practices will have benefits for testing phases. As the effort to develop MBMA continues, it will need to clearly and unambiguously establish the roles of uncertainty and risk in the system model. This will enable a variety of uncertainty-based analyses to be performed much more rapidly than ever before and has the promise to increase the integration of CRM (Continuous Risk Management) and PRA (Probabilistic Risk Analyses) even more fully into the project development life cycle. Various views and viewpoints will be required for assurance disciplines, and an over-arching viewpoint will then be able to more completely characterize the state of the project/program as well as (possibly) enabling the safety case approach for overall risk awareness and communication
    • …
    corecore