118,087 research outputs found

    Knowledge discovery through creating formal contexts

    Get PDF
    Knowledge discovery is important for systems that have computational intelligence in helping them learn and adapt to changing environments. By representing, in a formal way, the context in which an intelligent system operates, it is possible to discover knowledge through an emerging data technology called formal concept analysis (FCA). This paper describes a tool called FcaBedrock that converts data into formal contexts for FCA. This paper describes how, through a process of guided automation, data preparation techniques such as attribute exclusion and value restriction allow data to be interpreted to meet the requirements of the analysis. Examples are given of how formal contexts can be created using FcaBedrock and then analysed for knowledge discovery, using real datasets. Creating formal contexts using FcaBedrock is shown to be straightforward and versatile. Large datasets are easily converted into a standard FCA format

    Visualising computational intelligence through converting data into formal concepts

    Get PDF

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Knowledge discovery through creating formal contexts

    Get PDF
    Knowledge discovery is important for systems that have computational intelligence in helping them learn and adapt to changing environments. By representing, in a formal way, the context in which an intelligent system operates, it is possible to discover knowledge through an emerging data technology called Formal Concept Analysis (FCA). This paper describes a tool called FcaBedrock that converts data into Formal Contexts for FCA. The paper describes how, through a process of guided automation, data preparation techniques such as attribute exclusion and value restriction allow data to be interpreted to meet the requirements of the analysis. Creating Formal Contexts using FcaBedrock is shown to be straightforward and versatile. Large data sets are easily converted into a standard FCA format

    Evaluating the use of the Child and Adolescent Intellectual Disability Screening Questionnaire (CAIDS-Q) to estimate IQ in children with low intellectual ability

    Get PDF
    In situations where completing a full intellectual assessment is not possible or desirable the clinician or researcher may require an alternative means of accurately estimating intellectual functioning. There has been limited research in the use of proxy IQ measures in children with an intellectual disability or low IQ. The present study aimed to provide a means of converting total scores from a screening tool (the Child and Adolescent Intellectual Disability Screening Questionnaire: CAIDS-Q) to an estimated IQ. A series of linear regression analyses were conducted on data from 428 children and young people referred to clinical services, where FSIQ was predicted from CAIDS-Q total scores. Analyses were conducted for three age groups between ages 6 and 18 years. The study presents a conversion table for converting CAIDS-Q total scores to estimates of FSIQ, with corresponding 95% prediction intervals to allow the clinician or researcher to estimate FSIQ scores from CAIDS-Q total scores. It is emphasised that, while this conversion may offer a quick means of estimating intellectual functioning in children with a below average IQ, it should be used with caution, especially in children aged between 6 and 8 years old

    On relating functional modeling approaches: abstracting functional models from behavioral models

    Get PDF
    This paper presents a survey of functional modeling approaches and describes a strategy to establish functional knowledge exchange between them. This survey is focused on a comparison of function meanings and representations. It is argued that functions represented as input-output flow transformations correspond to behaviors in the approaches that characterize functions as intended behaviors. Based on this result a strategy is presented to relate the different meanings of function between the approaches, establishing functional knowledge exchange between them. It is shown that this strategy is able to preserve more functional information than the functional knowledge exchange methodology of Kitamura, Mizoguchi, and co-workers. The strategy proposed here consists of two steps. In step one, operation-on-flow functions are translated into behaviors. In step two, intended behavior functions are derived from behaviors. The two-step strategy and its benefits are demonstrated by relating functional models of a power screwdriver between methodologies

    First-Order Decomposition Trees

    Full text link
    Lifting attempts to speed up probabilistic inference by exploiting symmetries in the model. Exact lifted inference methods, like their propositional counterparts, work by recursively decomposing the model and the problem. In the propositional case, there exist formal structures, such as decomposition trees (dtrees), that represent such a decomposition and allow us to determine the complexity of inference a priori. However, there is currently no equivalent structure nor analogous complexity results for lifted inference. In this paper, we introduce FO-dtrees, which upgrade propositional dtrees to the first-order level. We show how these trees can characterize a lifted inference solution for a probabilistic logical model (in terms of a sequence of lifted operations), and make a theoretical analysis of the complexity of lifted inference in terms of the novel notion of lifted width for the tree
    corecore