2,122 research outputs found

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Equational Reasonings in Wireless Network Gossip Protocols

    Get PDF
    Gossip protocols have been proposed as a robust and efficient method for disseminating information throughout large-scale networks. In this paper, we propose a compositional analysis technique to study formal probabilistic models of gossip protocols expressed in a simple probabilistic timed process calculus for wireless sensor networks. We equip the calculus with a simulation theory to compare probabilistic protocols that have similar behaviour up to a certain tolerance. The theory is used to prove a number of algebraic laws which revealed to be very effective to estimate the performances of gossip networks, with and without communication collisions, and randomised gossip networks. Our simulation theory is an asymmetric variant of the weak bisimulation metric that maintains most of the properties of the original definition. However, our asymmetric version is particularly suitable to reason on protocols in which the systems under consideration are not approximately equivalent, as in the case of gossip protocols

    Fast Structuring of Radio Networks for Multi-Message Communications

    Full text link
    We introduce collision free layerings as a powerful way to structure radio networks. These layerings can replace hard-to-compute BFS-trees in many contexts while having an efficient randomized distributed construction. We demonstrate their versatility by using them to provide near optimal distributed algorithms for several multi-message communication primitives. Designing efficient communication primitives for radio networks has a rich history that began 25 years ago when Bar-Yehuda et al. introduced fast randomized algorithms for broadcasting and for constructing BFS-trees. Their BFS-tree construction time was O(Dlogā”2n)O(D \log^2 n) rounds, where DD is the network diameter and nn is the number of nodes. Since then, the complexity of a broadcast has been resolved to be TBC=Ī˜(Dlogā”nD+logā”2n)T_{BC} = \Theta(D \log \frac{n}{D} + \log^2 n) rounds. On the other hand, BFS-trees have been used as a crucial building block for many communication primitives and their construction time remained a bottleneck for these primitives. We introduce collision free layerings that can be used in place of BFS-trees and we give a randomized construction of these layerings that runs in nearly broadcast time, that is, w.h.p. in TLay=O(Dlogā”nD+logā”2+Ļµn)T_{Lay} = O(D \log \frac{n}{D} + \log^{2+\epsilon} n) rounds for any constant Ļµ>0\epsilon>0. We then use these layerings to obtain: (1) A randomized algorithm for gathering kk messages running w.h.p. in O(TLay+k)O(T_{Lay} + k) rounds. (2) A randomized kk-message broadcast algorithm running w.h.p. in O(TLay+klogā”n)O(T_{Lay} + k \log n) rounds. These algorithms are optimal up to the small difference in the additive poly-logarithmic term between TBCT_{BC} and TLayT_{Lay}. Moreover, they imply the first optimal O(nlogā”n)O(n \log n) round randomized gossip algorithm

    Semantic Query Reformulation in Social PDMS

    Full text link
    We consider social peer-to-peer data management systems (PDMS), where each peer maintains both semantic mappings between its schema and some acquaintances, and social links with peer friends. In this context, reformulating a query from a peer's schema into other peer's schemas is a hard problem, as it may generate as many rewritings as the set of mappings from that peer to the outside and transitively on, by eventually traversing the entire network. However, not all the obtained rewritings are relevant to a given query. In this paper, we address this problem by inspecting semantic mappings and social links to find only relevant rewritings. We propose a new notion of 'relevance' of a query with respect to a mapping, and, based on this notion, a new semantic query reformulation approach for social PDMS, which achieves great accuracy and flexibility. To find rapidly the most interesting mappings, we combine several techniques: (i) social links are expressed as FOAF (Friend of a Friend) links to characterize peer's friendship and compact mapping summaries are used to obtain mapping descriptions; (ii) local semantic views are special views that contain information about external mappings; and (iii) gossiping techniques improve the search of relevant mappings. Our experimental evaluation, based on a prototype on top of PeerSim and a simulated network demonstrate that our solution yields greater recall, compared to traditional query translation approaches proposed in the literature.Comment: 29 pages, 8 figures, query rewriting in PDM

    On the Role of Mobility for Multi-message Gossip

    Full text link
    We consider information dissemination in a large nn-user wireless network in which kk users wish to share a unique message with all other users. Each of the nn users only has knowledge of its own contents and state information; this corresponds to a one-sided push-only scenario. The goal is to disseminate all messages efficiently, hopefully achieving an order-optimal spreading rate over unicast wireless random networks. First, we show that a random-push strategy -- where a user sends its own or a received packet at random -- is order-wise suboptimal in a random geometric graph: specifically, Ī©(n)\Omega(\sqrt{n}) times slower than optimal spreading. It is known that this gap can be closed if each user has "full" mobility, since this effectively creates a complete graph. We instead consider velocity-constrained mobility where at each time slot the user moves locally using a discrete random walk with velocity v(n)v(n) that is much lower than full mobility. We propose a simple two-stage dissemination strategy that alternates between individual message flooding ("self promotion") and random gossiping. We prove that this scheme achieves a close to optimal spreading rate (within only a logarithmic gap) as long as the velocity is at least v(n)=Ļ‰(logā”n/k)v(n)=\omega(\sqrt{\log n/k}). The key insight is that the mixing property introduced by the partial mobility helps users to spread in space within a relatively short period compared to the optimal spreading time, which macroscopically mimics message dissemination over a complete graph.Comment: accepted to IEEE Transactions on Information Theory, 201

    Information Gathering in Ad-Hoc Radio Networks with Tree Topology

    Full text link
    We study the problem of information gathering in ad-hoc radio networks without collision detection, focussing on the case when the network forms a tree, with edges directed towards the root. Initially, each node has a piece of information that we refer to as a rumor. Our goal is to design protocols that deliver all rumors to the root of the tree as quickly as possible. The protocol must complete this task within its allotted time even though the actual tree topology is unknown when the computation starts. In the deterministic case, assuming that the nodes are labeled with small integers, we give an O(n)-time protocol that uses unbounded messages, and an O(n log n)-time protocol using bounded messages, where any message can include only one rumor. We also consider fire-and-forward protocols, in which a node can only transmit its own rumor or the rumor received in the previous step. We give a deterministic fire-and- forward protocol with running time O(n^1.5), and we show that it is asymptotically optimal. We then study randomized algorithms where the nodes are not labelled. In this model, we give an O(n log n)-time protocol and we prove that this bound is asymptotically optimal

    Epistemic Protocols for Distributed Gossiping

    Get PDF
    Gossip protocols aim at arriving, by means of point-to-point or group communications, at a situation in which all the agents know each other's secrets. We consider distributed gossip protocols which are expressed by means of epistemic logic. We provide an operational semantics of such protocols and set up an appropriate framework to argue about their correctness. Then we analyze specific protocols for complete graphs and for directed rings.Comment: In Proceedings TARK 2015, arXiv:1606.0729
    • ā€¦
    corecore