8,232 research outputs found

    Deductive Verification of Parallel Programs Using Why3

    Full text link
    The Message Passing Interface specification (MPI) defines a portable message-passing API used to program parallel computers. MPI programs manifest a number of challenges on what concerns correctness: sent and expected values in communications may not match, resulting in incorrect computations possibly leading to crashes; and programs may deadlock resulting in wasted resources. Existing tools are not completely satisfactory: model-checking does not scale with the number of processes; testing techniques wastes resources and are highly dependent on the quality of the test set. As an alternative, we present a prototype for a type-based approach to programming and verifying MPI like programs against protocols. Protocols are written in a dependent type language designed so as to capture the most common primitives in MPI, incorporating, in addition, a form of primitive recursion and collective choice. Protocols are then translated into Why3, a deductive software verification tool. Source code, in turn, is written in WhyML, the language of the Why3 platform, and checked against the protocol. Programs that pass verification are guaranteed to be communication safe and free from deadlocks. We verified several parallel programs from textbooks using our approach, and report on the outcome.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Pabble: parameterised Scribble

    Get PDF
    © 2014, The Author(s).Many parallel and distributed message-passing programs are written in a parametric way over available resources, in particular the number of nodes and their topologies, so that a single parallel program can scale over different environments. This article presents a parameterised protocol description language, Pabble, which can guarantee safety and progress in a large class of practical, complex parameterised message-passing programs through static checking. Pabble can describe an overall interaction topology, using a concise and expressive notation, designed for a variable number of participants arranged in multiple dimensions. These parameterised protocols in turn automatically generate local protocols for type checking parameterised MPI programs for communication safety and deadlock freedom. In spite of undecidability of endpoint projection and type checking in the underlying parameterised session type theory, our method guarantees the termination of end point projection and type checking

    Future-based Static Analysis of Message Passing Programs

    Get PDF
    Message passing is widely used in industry to develop programs consisting of several distributed communicating components. Developing functionally correct message passing software is very challenging due to the concurrent nature of message exchanges. Nonetheless, many safety-critical applications rely on the message passing paradigm, including air traffic control systems and emergency services, which makes proving their correctness crucial. We focus on the modular verification of MPI programs by statically verifying concrete Java code. We use separation logic to reason about local correctness and define abstractions of the communication protocol in the process algebra used by mCRL2. We call these abstractions futures as they predict how components will interact during program execution. We establish a provable link between futures and program code and analyse the abstract futures via model checking to prove global correctness. Finally, we verify a leader election protocol to demonstrate our approach.Comment: In Proceedings PLACES 2016, arXiv:1606.0540

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    A Formal Model For Real-Time Parallel Computation

    Full text link
    The imposition of real-time constraints on a parallel computing environment- specifically high-performance, cluster-computing systems- introduces a variety of challenges with respect to the formal verification of the system's timing properties. In this paper, we briefly motivate the need for such a system, and we introduce an automaton-based method for performing such formal verification. We define the concept of a consistent parallel timing system: a hybrid system consisting of a set of timed automata (specifically, timed Buchi automata as well as a timed variant of standard finite automata), intended to model the timing properties of a well-behaved real-time parallel system. Finally, we give a brief case study to demonstrate the concepts in the paper: a parallel matrix multiplication kernel which operates within provable upper time bounds. We give the algorithm used, a corresponding consistent parallel timing system, and empirical results showing that the system operates under the specified timing constraints.Comment: In Proceedings FTSCS 2012, arXiv:1212.657
    corecore