13,343 research outputs found

    Formal Verification vs. Quantum Uncertainty

    Get PDF
    Quantum programming is hard: Quantum programs are necessarily probabilistic and impossible to examine without disrupting the execution of a program. In response to this challenge, we and a number of other researchers have written tools to verify quantum programs against their intended semantics. This is not enough. Verifying an idealized semantics against a real world quantum program doesn\u27t allow you to confidently predict the program\u27s output. In order to have verification that works, you need both an error semantics related to the hardware at hand (this is necessarily low level) and certified compilation to the that same hardware. Once we have these two things, we can talk about an approach to quantum programming where we start by writing and verifying programs at a high level, attempt to verify properties of the compiled code, and repeat as necessary

    Seeing Shapes in Clouds: On the Performance-Cost trade-off for Heterogeneous Infrastructure-as-a-Service

    Full text link
    In the near future FPGAs will be available by the hour, however this new Infrastructure as a Service (IaaS) usage mode presents both an opportunity and a challenge: The opportunity is that programmers can potentially trade resources for performance on a much larger scale, for much shorter periods of time than before. The challenge is in finding and traversing the trade-off for heterogeneous IaaS that guarantees increased resources result in the greatest possible increased performance. Such a trade-off is Pareto optimal. The Pareto optimal trade-off for clusters of heterogeneous resources can be found by solving multiple, multi-objective optimisation problems, resulting in an optimal allocation of tasks to the available platforms. Solving these optimisation programs can be done using simple heuristic approaches or formal Mixed Integer Linear Programming (MILP) techniques. When pricing 128 financial options using a Monte Carlo algorithm upon a heterogeneous cluster of Multicore CPU, GPU and FPGA platforms, the MILP approach produces a trade-off that is up to 110% faster than a heuristic approach, and over 50% cheaper. These results suggest that high quality performance-resource trade-offs of heterogeneous IaaS are best realised through a formal optimisation approach.Comment: Presented at Second International Workshop on FPGAs for Software Programmers (FSP 2015) (arXiv:1508.06320

    Reduced Scaling Hilbert Space Variational Monte Carlo

    Get PDF
    We show that for both single-Slater-Jastrow and Jastrow geminal power wave functions, the formal cost scaling of Hilbert space variational Monte Carlo can be reduced from fifth to fourth order in the system size, thus bringing it in line with the long-standing scaling of its real space counterpart. While traditional quantum chemistry methods can reduce costs related to the two-electron integral tensor through resolution of the identity and Cholesky decomposition approaches, we show that such approaches are ineffective in the presence of Hilbert space Jastrow factors. Instead, we develop a simple semi-stochastic approach that can take similar advantage of the near-sparsity of this four-index tensor. Through demonstrations on alkanes of increasing length, we show that accuracy and overall statistical uncertainty are not meaningfully affected and that a total cost crossover is reached as early as 50 electrons.Comment: 8 pages, 7 figure

    Classical light vs. nonclassical light: Characterizations and interesting applications

    Full text link
    We briefly review the ideas that have shaped modern optics and have led to various applications of light ranging from spectroscopy to astrophysics, and street lights to quantum communication. The review is primarily focused on the modern applications of classical light and nonclassical light. Specific attention has been given to the applications of squeezed, antibunched, and entangled states of radiation field. Applications of Fock states (especially single photon states) in the field of quantum communication are also discussed.Comment: 32 pages, 3 figures, a review on applications of ligh

    Nonquantum Gravity

    Full text link
    One of the great challenges for 21st century physics is to quantize gravity and generate a theory that will unify gravity with the other three fundamental forces of nature. This paper takes the (heretical) point of view that gravity may be an inherently classical, i.e., nonquantum, phenomenon and investigates the experimental consequences of such a model. At present there is no experimental evidence of the quantum nature of gravity and the liklihood of definitive tests in the future is not at all certain. If gravity is, indeed, a nonquantum phenomenon, then it is suggested that evidence will most likely appear at mesoscopic scales.Comment: essentially the same as the version that appears in Foundations of Physics, 39, 331 (2009

    Black holes production in self-complete quantum gravity

    Full text link
    A regular black hole model, which has been proposed by Hayward, is reconsidered in the framework of higher dimensional TeV unification and self-complete quantum gravity scenario (Dvali, Spallucci). We point out the "quantum" nature of these objects and compute their cross section production by taking into account the key role played by the existence of a "minimal length" l_0. We show as the threshold energy is related to l_0. We recover, in the high energy limit, the standard "black-disk" form of the cross section, while it vanishes, below threshold, faster than any power of the invariant mass-energy \sqrt{-s}.Comment: 12 pages; 3 figures; accepted for publication in PL

    Complementarity and Scientific Rationality

    Get PDF
    Bohr's interpretation of quantum mechanics has been criticized as incoherent and opportunistic, and based on doubtful philosophical premises. If so Bohr's influence, in the pre-war period of 1927-1939, is the harder to explain, and the acceptance of his approach to quantum mechanics over de Broglie's had no reasonable foundation. But Bohr's interpretation changed little from the time of its first appearance, and stood independent of any philosophical presuppositions. The principle of complementarity is itself best read as a conjecture of unusually wide scope, on the nature and future course of explanations in the sciences (and not only the physical sciences). If it must be judged a failure today, it is not because of any internal inconsistency.Comment: 29 page
    • …
    corecore