3,191 research outputs found

    Verification of the Tree-Based Hierarchical Read-Copy Update in the Linux Kernel

    Full text link
    Read-Copy Update (RCU) is a scalable, high-performance Linux-kernel synchronization mechanism that runs low-overhead readers concurrently with updaters. Production-quality RCU implementations for multi-core systems are decidedly non-trivial. Giving the ubiquity of Linux, a rare "million-year" bug can occur several times per day across the installed base. Stringent validation of RCU's complex behaviors is thus critically important. Exhaustive testing is infeasible due to the exponential number of possible executions, which suggests use of formal verification. Previous verification efforts on RCU either focus on simple implementations or use modeling languages, the latter requiring error-prone manual translation that must be repeated frequently due to regular changes in the Linux kernel's RCU implementation. In this paper, we first describe the implementation of Tree RCU in the Linux kernel. We then discuss how to construct a model directly from Tree RCU's source code in C, and use the CBMC model checker to verify its safety and liveness properties. To our best knowledge, this is the first verification of a significant part of RCU's source code, and is an important step towards integration of formal verification into the Linux kernel's regression test suite.Comment: This is a long version of a conference paper published in the 2018 Design, Automation and Test in Europe Conference (DATE

    Process Synchronization with Readers and Writers Revisited

    Get PDF
    The readers-writers problem is one of the very well known problems in concurrency theory. It was first introduced by Courtois et.al. in 1971 [1] and requires the synchronization of processes trying to read and write a shared resource. Several readers are allowed to access the resource simultaneously, but a writer must be given exclusive access to that resource. Courtois et.al. gave semaphore-based solutions to what they called the first and second readers-writers problems. Both of their solutions are prone to starvation. The first allows readers to indefinitely lock out writers and the second allows writers to indefinitely lock out readers. This paper presents and proves correct a third semaphore-based solution, which is starvation-free for both reader and writer processes. To the best of our knowledge, this is the first fair semaphore-based solution that at the same time allows several readers to access the resource simultaneously

    Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Full text link
    One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking

    Analysing Mutual Exclusion using Process Algebra with Signals

    Get PDF
    In contrast to common belief, the Calculus of Communicating Systems (CCS) and similar process algebras lack the expressive power to accurately capture mutual exclusion protocols without enriching the language with fairness assumptions. Adding a fairness assumption to implement a mutual exclusion protocol seems counter-intuitive. We employ a signalling operator, which can be combined with CCS, or other process calculi, and show that this minimal extension is expressive enough to model mutual exclusion: we confirm the correctness of Peterson's mutual exclusion algorithm for two processes, as well as Lamport's bakery algorithm, under reasonable assumptions on the underlying memory model. The correctness of Peterson's algorithm for more than two processes requires stronger, less realistic assumptions on the underlying memory model.Comment: In Proceedings EXPRESS/SOS 2017, arXiv:1709.0004
    • …
    corecore