77,759 research outputs found

    Verification of a Prolog compiler - first steps with KIV

    Get PDF
    This paper describes the first steps of the formal verification of a Prolog compiler with the KIV system. We build upon the mathematical definitions given by Boerger and Rosenzweig in [BR95]. There an operational semantics of Prolog is defined using the formalism of Evolving Algebras, and then transformed in several systematic steps to the Warren Abstract Machine (WAM). To verify these transformation steps formally in KIV, a translation of deterministic Evolving Algebras to Dynamic Logic is defined, which may also be of general interest. With this translation, correctness of transformation steps becomes a problem of program equivalence in Dynamic Logic. We define a proof technique for verifying such problems, which corresponds to the use of proof maps in Evolving Algebras. Although the transfor- mation steps are small enough for a mathematical analysis, this is not sufficient for a successful formal correctness proof. Such a proof requires to explicitly state a lot of facts, which were only impli- citly assumed in the analysis. We will argue that these assumptions cannot be guessed in a first proof attempt, but have to be filled in incrementally. We report on our experience with this `evolutionary\u27 verification process for the first transformation step, and the support KIV offers to do such incremental correctness proofs

    Modeling and Analysis of Self-Adaptive Systems Based on Graph Transformation

    Get PDF
    Software systems nowadays require continuous operation despite changes both in user needs and in their operational environments. Self-adaptive systems are typically instrumented with tools to autonomously perform adaptation to these changes while maintaining some desired properties. In this paper we model and analyze self-adaptive systems by means of typed, attributed graph grammars. The interplay of different grammars representing the application and the adaptation logic is realized by an adaption manager. Within this formal framework we define consistency and operational properties that are maintained despite adaptations and we give static conditions for their verification. The overall approach is supported by the AGG tool that offers the features for modeling, simulating, and analyzing graph transformation systems. A case study modeling a business process that adapts to changing environment conditions is used to demonstrate and validate the formal framework

    Formal Analysis and Verication of Self-Healing Systems: Long Version

    Get PDF
    Self-healing (SH-)systems are characterized by an automatic discovery of system failures, and techniques how to recover from these situations. In this paper, we show how to model SH-systems using algebraic graph transformation. These systems are modeled as typed graph grammars enriched with graph constraints. This allows not only for formal modeling of consistency and operational properties, but also for their analysis and verification using the tool AGG. We present sufficient static conditions for self-healing properties, deadlock-freeness and liveness of SH-systems. The overall approach is applied to a traffic light system case study, where the corresponding properties are verified

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Trustworthy Refactoring via Decomposition and Schemes: A Complex Case Study

    Get PDF
    Widely used complex code refactoring tools lack a solid reasoning about the correctness of the transformations they implement, whilst interest in proven correct refactoring is ever increasing as only formal verification can provide true confidence in applying tool-automated refactoring to industrial-scale code. By using our strategic rewriting based refactoring specification language, we present the decomposition of a complex transformation into smaller steps that can be expressed as instances of refactoring schemes, then we demonstrate the semi-automatic formal verification of the components based on a theoretical understanding of the semantics of the programming language. The extensible and verifiable refactoring definitions can be executed in our interpreter built on top of a static analyser framework.Comment: In Proceedings VPT 2017, arXiv:1708.0688

    Prototyping the Semantics of a DSL using ASF+SDF: Link to Formal Verification of DSL Models

    Full text link
    A formal definition of the semantics of a domain-specific language (DSL) is a key prerequisite for the verification of the correctness of models specified using such a DSL and of transformations applied to these models. For this reason, we implemented a prototype of the semantics of a DSL for the specification of systems consisting of concurrent, communicating objects. Using this prototype, models specified in the DSL can be transformed to labeled transition systems (LTS). This approach of transforming models to LTSs allows us to apply existing tools for visualization and verification to models with little or no further effort. The prototype is implemented using the ASF+SDF Meta-Environment, an IDE for the algebraic specification language ASF+SDF, which offers efficient execution of the transformation as well as the ability to read models and produce LTSs without any additional pre or post processing.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Integrated Modeling and Verification of Real-Time Systems through Multiple Paradigms

    Get PDF
    Complex systems typically have many different parts and facets, with different characteristics. In a multi-paradigm approach to modeling, formalisms with different natures are used in combination to describe complementary parts and aspects of the system. This can have a beneficial impact on the modeling activity, as different paradigms an be better suited to describe different aspects of the system. While each paradigm provides a different view on the many facets of the system, it is of paramount importance that a coherent comprehensive model emerges from the combination of the various partial descriptions. In this paper we present a technique to model different aspects of the same system with different formalisms, while keeping the various models tightly integrated with one another. In addition, our approach leverages the flexibility provided by a bounded satisfiability checker to encode the verification problem of the integrated model in the propositional satisfiability (SAT) problem; this allows users to carry out formal verification activities both on the whole model and on parts thereof. The effectiveness of the approach is illustrated through the example of a monitoring system.Comment: 27 page
    • …
    corecore