95 research outputs found

    Fourth NASA Langley Formal Methods Workshop

    Get PDF
    This publication consists of papers presented at NASA Langley Research Center's fourth workshop on the application of formal methods to the design and verification of life-critical systems. Topic considered include: Proving properties of accident; modeling and validating SAFER in VDM-SL; requirement analysis of real-time control systems using PVS; a tabular language for system design; automated deductive verification of parallel systems. Also included is a fundamental hardware design in PVS

    Experiences Using Formal Methods for Requirements Modeling

    Get PDF
    This paper describes three cases studies in the lightweight application of formal methods to requirements modeling for spacecraft fault protection systems. The case studies differ from previously reported applications of formal methods in that formal methods were applied very early in the requirements engineering process, to validate the evolving requirements. The results were fed back into the projects, to improve the informal specifications. For each case study, we describe what methods were applied, how they were applied, how much effort was involved, and what the findings were. In all three cases, the formal modeling provided a cost effective enhancement of the existing verification and validation processes. We conclude that the benefits gained from early modeling of unstable requirements more than outweigh the effort needed to maintain multiple representations

    Formal Methods Specification and Analysis Guidebook for the Verification of Software and Computer Systems

    Get PDF
    This guidebook, the second of a two-volume series, is intended to facilitate the transfer of formal methods to the avionics and aerospace community. The 1st volume concentrates on administrative and planning issues [NASA-95a], and the second volume focuses on the technical issues involved in applying formal methods to avionics and aerospace software systems. Hereafter, the term "guidebook" refers exclusively to the second volume of the series. The title of this second volume, A Practitioner's Companion, conveys its intent. The guidebook is written primarily for the nonexpert and requires little or no prior experience with formal methods techniques and tools. However, it does attempt to distill some of the more subtle ingredients in the productive application of formal methods. To the extent that it succeeds, those conversant with formal methods will also nd the guidebook useful. The discussion is illustrated through the development of a realistic example, relevant fragments of which appear in each chapter. The guidebook focuses primarily on the use of formal methods for analysis of requirements and high-level design, the stages at which formal methods have been most productively applied. Although much of the discussion applies to low-level design and implementation, the guidebook does not discuss issues involved in the later life cycle application of formal methods

    Evaluation of formal IDEs for human-machine interface design and analysis: the case of CIRCUS and PVSio-web

    Get PDF
    Critical human-machine interfaces are present in many systems including avionics systems and medical devices. Use error is a concern in these systems both in terms of hardware panels and input devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of buttons, knobs and displays is now a key element in the overall safety of the system. New integrated development environments (IDEs) based on formal methods technologies have been developed by the research community to support the design and analysis of high-confidence human-machine interfaces. To date, little work has focused on the comparison of these particular types of formal IDEs. This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based development and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on the PVS theorem proving system.This work is partially supported by: Project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) PhD scholarship

    Verification of User Interface Software: The Example of Use-Related Safety Requirements and Programmable Medical Devices

    Get PDF
    One part of demonstrating that a device is acceptably safe, often required by regulatory standards, is to show that it satisfies a set of requirements known to mitigate hazards. This paper is concerned with how to demonstrate that a user interface software design is compliant with use-related safety requirements. A methodology is presented based on the use of formal methods technologies to provide guidance to developers about addressing three key verification challenges: 1) how to validate a model, and show that it is a faithful representation of the device; 2) how to formalize requirements given in natural language, and demonstrate the benefits of the formalization process; and 3) how to prove requirements of a model using readily available formal verification tools. A model of a commercial device is used throughout the paper to demonstrate the methodology. A representative set of requirements are considered. They are based on US Food and Drug Administration (FDA) draft documentation for programmable medical devices, and on best practice in user interface design illustrated in relevant international standards. The methodology aims to demonstrate how to achieve the FDA's agenda of using formal methods to support the approval process for medical devices.This work was supported by the EPSRC research Grant EP/G059063/1: CHI+MED (Computer-Human Interaction for Medical Devices). The work of P. Masci and J.C. Campos was supported under Project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), through the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF)

    Extracting proofs from documents

    Get PDF
    Often, theorem checkers like PVS are used to check an existing proof, which is part of some document. Since there is a large difference between the notations used in the documents and the notations used in the theorem checkers, it is usually a laborious task to convert an existing proof into a format which can be checked by a machine. In the system that we propose, the author is assisted in the process of converting an existing proof into the PVS language and having it checked by PVS. 1 Introduction The now-classic ALGOL 60 report [5] recognized three different levels of language: a reference language, a publication language and several hardware representations, whereby the publication language was intended to admit variations on the reference language and was to be used for stating and communicating processes. The importance of publication language ---often referred to nowadays as "pseudo-code"--- is difficult to exaggerate since a publication language is the most effective way..

    Applying an Operational Formal Method to Safety-Critical Systems

    Get PDF
    Despite thirty years of study by the academic community, industry has not embraced the systematic usage of formal methods. To address this concern, a formal method is proposed which possesses many of the qualities that practitioners have listed as lacking from current formal methods: inclusion of both a specification and verification model, a tabular notation that only requires knowledge of first-order logic, support for both composition and decomposition, application throughout the software life-cycle, and tool support. The presentation includes several applications to safety-critical software systems. Keywords and Phrases Formal methods, specification, trace-based systems, software development, concurrency, verification

    The specification-based validation of reliable multicast protocol: Problem Report

    Get PDF
    Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally ordered, reliable multicast service on top of unreliable IP multicasting. In this report, we develop formal models for RMP using existing automated verification systems, and perform validation on the formal RMP specifications. The validation analysis help identifies some minor specification and design problems. We also use the formal models of RMP to generate a test suite for conformance testing of the implementation. Throughout the process of RMP development, we follow an iterative, interactive approach that emphasizes concurrent and parallel progress of implementation and verification processes. Through this approach, we incorporate formal techniques into our development process, promote a common understanding for the protocol, increase the reliability of our software, and maintain high fidelity between the specifications of RMP and its implementation
    • …
    corecore