808 research outputs found

    A secure and private RFID authentication protocol based on quadratic residue

    Get PDF
    Radio Frequency IDentification based systems are getting pervasively deployed in many real-life applications in various settings for identification and authentication of remote objects. However, the messages that are transmitted over a insecure channel, are vulnerable to security and privacy concerns such as data privacy, location privacy of tag owner and etc. Recently, Yeh et al.'s proposed a RFID authentication protocol based on quadratic residue which is claimed to provide location privacy and prevent possible attacks. In this paper, we formally analyzed the protocol and we proved that the protocol provides destructive privacy according to Vaudenay privacy model. Moreover, we proposed a unilateral authentication protocol and we prove that our protocol satisfies higher privacy level such as narrow strong privacy. Besides, we proposed an enhanced version of our proposed protocol, which has same privacy level as Yeh at al protocol, but has reader authentication against stronger adversaries. Furthermore, the enhanced version of our protocol uses smaller number of cryptographic operations when compared to Yeh at al protocol and it is also cost efficient at the server and tag side and requires O(1) complexity to identify a RFID tag

    Structured Intuition: A Methodology to Analyse Entity Authentication

    Get PDF

    KALwEN: A New Practical and Interoperable Key Management Scheme for Body Sensor Networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks(BSNs) pose several challenges -- some inherited from wireless sensor networks(WSNs), some unique to themselves -- that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new lightweight scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports global broadcast, local broadcast and neighbor-to-neighbor unicast, while preserving past key secrecry and future key secrecy. The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case
    corecore