6,147 research outputs found

    Formal Verification in the Loop to Enhance Verification of Safety-Critical Cyber-physical Systems

    Get PDF
    Formal verification may play a central role in the development of safecontrollers, such as those found in electric drives or (semi-)autonomousvehicles, whose complexity arises from the coexistence ofmechanical and electrical subsystems with sophisticated electronic controllersthat must implement high-level control policies according to different drivingmodes, while optimizing several objectives, such as safety first and foremost,efficiency, and performance among others.  Model-driven development resorts tosimulation to assess how well the various requirements and constraints aresatisfied, but there is a growing awareness that more rigorous methods areneeded to achieve the required levels of safety.  This paper proposes aconceptual framework for the development of complex systems based on (i)higher-order logic specification, (ii) verification by theorem proving, and(iii) tight integration of verification with model-driven development andsimulation.  This framework addresses both digital and analog systems, asillustrated with some examples in different fields including implantablebiomedical systems, autonomous vehicles, and electric valve actuation

    Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models

    Get PDF
    Matlab/Simulink is a development and simulation language that is widely used by the Cyber-Physical System (CPS) industry to model dynamical systems. There are two mainstream approaches to verify CPS Simulink models: model testing that attempts to identify failures in models by executing them for a number of sampled test inputs, and model checking that attempts to exhaustively check the correctness of models against some given formal properties. In this paper, we present an industrial Simulink model benchmark, provide a categorization of different model types in the benchmark, describe the recurring logical patterns in the model requirements, and discuss the results of applying model checking and model testing approaches to identify requirements violations in the benchmarked models. Based on the results, we discuss the strengths and weaknesses of model testing and model checking. Our results further suggest that model checking and model testing are complementary and by combining them, we can significantly enhance the capabilities of each of these approaches individually. We conclude by providing guidelines as to how the two approaches can be best applied together.Comment: 10 pages + 2 page reference

    Designed-in security for cyber-physical systems

    Get PDF
    An expert from academia, one from a cyber-physical system (CPS) provider, and one from an end asset owner and user offer their different perspectives on the meaning and challenges of 'designed-in security.' The academic highlights foundational issues and talks about emerging technology that can help us design and implement secure software in CPSs. The vendor's view includes components of the academic view but emphasizes the secure system development process and the standards that the system must satisfy. The user issues a call to action and offers ideas that will ensure progress

    Challenges and Research Directions in Medical Cyber-Physical Systems

    Get PDF
    Medical cyber-physical systems (MCPS) are lifecritical, context-aware, networked systems of medical devices. These systems are increasingly used in hospitals to provide highquality continuous care for patients. The need to design complex MCPS that are both safe and effective has presented numerous challenges, including achieving high assurance in system software, intoperability, context-aware intelligence, autonomy, security and privacy, and device certifiability. In this paper, we discuss these challenges in developing MCPS, some of our work in addressing them, and several open research issue

    Formal verification and co-simulation in the design of a synchronous motor control algorithm

    Get PDF
    Mechatronic systems are a class of cyber-physical systems, whose increasing complexity makes their validation and verification more and more difficult, while their requirements become more challenging. This paper introduces a development method based on model-based design, co-simulation and formal verification. The objective of this paper is to show the applicability of the method in an industrial setting. An application case study comes from the field of precision servo-motors, where formal verification has been used to find acceptable intervals of values for design parameters of the motor controller, which have been further explored using co-simulation to find optimal values. The reported results show that the method has been applied successfully to the case study, augmenting the current model-driven development processes by formal verification of stability, formal identification of acceptable parameter ranges, and automatic design-space exploration

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    REMIND: A Framework for the Resilient Design of Automotive Systems

    Get PDF
    In the past years, great effort has been spent on enhancing the security and safety of vehicular systems. Current advances in information and communication technology have increased the complexity of these systems and lead to extended functionalities towards self-driving and more connectivity. Unfortunately, these advances open the door for diverse and newly emerging attacks that hamper the security and, thus, the safety of vehicular systems. In this paper, we contribute to supporting the design of resilient automotive systems. We review and analyze scientific literature on resilience techniques, fault tolerance, and dependability. As a result, we present the REMIND resilience framework providing techniques for attack detection, mitigation, recovery, and resilience endurance. Moreover, we provide guidelines on how the REMIND framework can be used against common security threats and attacks and further discuss the trade-offs when applying these guidelines
    corecore