635 research outputs found

    Integrating formal methods into medical software development : the ASM approach

    Get PDF
    Medical devices are safety-critical systems since their malfunctions can seriously compromise human safety. Correct operation of a medical device depends upon the controlling software, whose development should adhere to certification standards. However, these standards provide general descriptions of common software engineering activities without any indication regarding particular methods and techniques to assure safety and reliability. This paper discusses how to integrate the use of a formal approach into the current normative for the medical software development. The rigorous process is based on the Abstract State Machine (ASM) formal method, its refinement principle, and model analysis approaches the method supports. The hemodialysis machine case study is used to show how the ASM-based design process covers most of the engineering activities required by the related standards, and provides rigorous approaches for medical software validation and verification

    AsmetaF: A Flattener for the ASMETA Framework

    Get PDF
    Abstract State Machines (ASMs) have shown to be a suitable high-level specification method for complex, even industrial, systems; the ASMETA framework, supporting several validation and verification activities on ASM models, is an example of a formal integrated development environment. Although ASMs allow modeling complex systems in a rather concise way -and this is advantageous for specification purposes-, such concise notation is in general a problem for verification activities as model checking and theorem proving that rely on tools accepting simpler notations. In this paper, we propose a flattener tool integrated in the ASMETA framework that transforms a general ASM model in a flattened model constituted only of update, parallel, and conditional rules; such model is easier to map to notations of verification tools. Experiments show the effect of applying the tool to some representative case studies of the ASMETA repository.Comment: In Proceedings F-IDE 2018, arXiv:1811.09014. The first two authors are supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST. Funding Reference number: 10.13039/501100009024 ERAT

    A Model-Based Approach to Comprehensive Risk Management for Medical Devices

    Get PDF
    The European medical technology industry consists of around 27,000 companies, more than 95% of them small and medium-sized enterprises (SMEs), with over 675,000 employees [MEDT17]. In the European Union (EU) alone, medical devices constituted by far the biggest part of the medical technology (MedTech) sector with a market of 95 billion euros in annual sales in 2015 [EURO15].The European medical technology industry consists of around 27,000 companies, more than 95% of them small and medium-sized enterprises (SMEs), with over 675,000 employees [MEDT17]. In the European Union (EU) alone, medical devices constituted by far the biggest part of the medical technology (MedTech) sector with a market of 95 billion euros in annual sales in 2015 [EURO15]

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    The economic impact of machine perfusion technology in liver transplantation

    Get PDF
    Introduction: Several clinical studies have demonstrated the safety, feasibility, and efficacy of machine perfusion in liver transplantation, although its economic outcomes are still underexplored. This review aimed to examine the costs related to machine perfusion and its associated outcomes.Methods: Expert opinion of several groups representing different machine perfusion modalities. Critical analysis of the published literature reporting the economic outcomes of the most used techniques of machine perfusion in liver transplantation (normothermic and hypothermic ex situ machine perfusion and in situ normothermic regional perfusion).Results: Machine perfusion costs include disposable components of the perfusion device, perfusate components, personnel and facility fees, and depreciation of the perfusion device or device lease fee. The limited current literature suggests that although this upfront cost varies between perfusion modalities, its use is highly likely to be cost-effective. Optimization of the donor liver utilization rate, local conditions of transplant programs (long waiting list times and higher MELD scores), a decreased rate of complications, changes in logistics, and length of hospital stay are potential cost savings points that must highlight the expected benefits of this intervention. An additional unaccounted factor is that machine perfusion optimizing donor organ utilization allows patients to be transplanted earlier, avoiding clinical deterioration while on the waiting list and the costs associated with hospital admissions and other required procedures.Conclusion: So far, the clinical benefits have guided machine perfusion implementation in liver transplantation. Albeit there is data suggesting the economic benefit of the technique, further investigation of its costs to healthcare systems and society and associated outcomes is needed.</p

    Formal techniques in the safety analysis of software components of a new dialysis machine

    Get PDF
    The paper is concerned with the practical use of formal techniques to contribute to the risk analysis of a new neonatal dialysis machine. The described formal analysis focuses on the controller component of the software implementation. The controller drives the dialysis cycle and deals with error management. The logic was analysed using model checking techniques and the source code was analysed formally, checking type correctness conditions, use of pointers and shared memory. The analysis provided evidence of the verification of risk control measures relating to the software component. The productive dialogue between the developers of the device, who had no experience or knowledge of formal methods, and the analyst using the formal analysis tools, provided a basis for the development of rationale for the effectiveness of the evidence. (C) 2019 Elsevier B.V. All rights reserved.This work has been funded by: EPSRC research grants EP/G059063/1 and EP/J008133/1: CHI+MED (Computer -Human Interaction for Medical Devices); and NanoSTIMA (ref. NORTE-01-0145-FEDER-000016) financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF). Leo Freitas would like to acknowledge EPSRC Trams2 project for financial support, Andrew Sims for providing access to the dialyser, which was used as our case study and Aleksandrs Baklanovs for doing some of the source analysis as part of an undergraduate project

    Kidney Int

    Get PDF
    Clostridioides difficile infections (CDIs) cause substantial morbidity and mortality. Patients on maintenance hemodialysis are 2 to 2.5 times more likely to develop CDI, with mortality rates 2-fold higher than the general population. Hospitalizations due to CDI among the maintenance hemodialysis population are high, and the frequency of antibiotic exposures and hospitalizations may contribute to CDI risk. In this report, a panel of experts in clinical nephrology, infectious diseases, and infection prevention provide guidance, based on expert opinion and published literature, aimed at preventing the spread of CDI in outpatient hemodialysis facilities.CC999999/ImCDC/Intramural CDC HHSUnited States

    Proceeding: 3rd Java International Nursing Conference 2015 “Harmony of Caring and Healing Inquiry for Holistic Nursing Practice; Enhancing Quality of Care”, Semarang, 20-21 August 2015

    Get PDF
    This is the proceeding of the 3rd Java International Nursing Conference 2015 organized by School of Nursing, Faculty of Medicine, Diponegoro University, in collaboration with STIKES Kendal. The conference was held on 20-21 August 2015 in Semarang, Indonesia. The conference aims to enable educators, students, practitioners and researchers from nursing, medicine, midwifery and other health sciences to disseminate and discuss evidence of nursing education, research, and practices to improve the quality of care. This conference also provides participants opportunities to develop their professional networks, learn from other colleagues and meet leading personalities in nursing and health sciences. The 3rd JINC 2015 was comprised of keynote lectures and concurrent submitted oral presentations and poster sessions. The following themes have been chosen to be the focus of the conference: (a) Multicenter Science: Physiology, Biology, Chemistry, etc. in Holistic Nursing Practice, (b) Complementary Therapy in Nursing and Complementary, Alternative Medicine: Alternative Medicine (Herbal Medicine), Complementary Therapy (Cupping, Acupuncture, Yoga, Aromatherapy, Music Therapy, etc.), (c) Application of Inter-professional Collaboration and Education: Education Development in Holistic Nursing, Competencies of Holistic Nursing, Learning Methods and Assessments, and (d) Application of Holistic Nursing: Leadership & Management, Entrepreneurship in Holistic Nursing, Application of Holistic Nursing in Clinical and Community Settings

    Preventico - tackling chronic kidney disease using wearable biosensors: market & commercialization

    Get PDF
    The Building Companies Based on Science Field Lab (FL) challenged students to explore a scientific breakthrough and build a business plan with the ultimate goal of creating a new venture. Throughout the FL, the group of students explored a real problem andits effects on society. From then, they identified a new and unique solution to tackle the initial problem, by pursuing market research, sizing, and a deep analysis of all stakeholders involved. In later stages, students also developed a financial analysis where fundraising needs were identified, as well as potential strategic partnerships, critical skills, valuation, and possible exit scenarios. This final document encompasses all the elements necessary to pitch to potential partners and investors
    corecore