79,415 research outputs found

    Exploring model-based development for the verification of real-time Java code

    Get PDF
    Many safety- and security-critical systems are real-time systems and, as a result, tools and techniques for verifying real-time systems are extremely important. Simulation and testing such systems can be exceedingly time-consuming and these techniques provide only probabilistic measures of correctness. There are a number of model-checking tools for real-time systems. However, they provide formal verification for models, not programs. To increase the confidence in real-time programs written in real-time Java, this paper takes a modelling approach to the design of such programs. First, models can be mechanically verified, to check whether they satisfy particular properties, by using current real-time model-checking tools. Then, programs are derived from the model by following a systematic approach. To illustrate the approach we use a nontrivial example: a gear controller

    Proceedings of the Second NASA Formal Methods Symposium

    Get PDF
    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis

    From Formal Requirement Analysis to Testing and Monitoring of Cyber-Physical Systems

    Get PDF
    abstract: Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of CPS is a computationally hard problem. Therefore, lightweight verification methods such as testing and monitoring of the CPS are considered in the industry. The formal representation of the CPS requirements is a challenging task. In addition, checking the system outputs with respect to requirements is a computationally complex problem. In this dissertation, these problems for the verification of CPS are addressed. The first method provides a formal requirement analysis framework which can find logical issues in the requirements and help engineers to correct the requirements. Also, a method is provided to detect tests which vacuously satisfy the requirement because of the requirement structure. This method is used to improve the test generation framework for CPS. Finally, two runtime verification algorithms are developed for off-line/on-line monitoring with respect to real-time requirements. These monitoring algorithms are computationally efficient, and they can be used in practical applications for monitoring CPS with low runtime overhead.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Model checking embedded control software

    Get PDF
    Recently, embedded systems have become more and more complicated and thus traditional testing and simulation techniques for system validation are in many cases not sufficient. Additionally, the control of several real-world systems and processes require complex timing, which is difficult to verify with testing. The time scales of different delays can vary so much that the set of different timings possible to validate with testing is usually very limited. More powerful methods are needed and one formal method that can be used to verify and validate whether a complex system meets its requirements is model checking. The goal of this work is to evaluate the applicability of model checking for embedded control software. A general model checking methodology is given along with some central guidelines for modeling real-time control systems and, especially, the control software of those systems. Using the model checking methodology a part of the control firmware of an Uninterruptible Power Supply (UPS) is modeled with the model checking tool UPPAAL, which uses networks of timed automata as its modeling language. Ten failure cases related to the operation of the UPS were investigated and one or several specifications were formalized from each failure case using a temporal logic called Timed Computation Tree Logic (TCTL). The model of the system was verified against the system specifications and as a result of the verification two of the specifications were found to be violated. The results of the work indicate that model checking is a promising method for verifying and finding errors of timed software controlled embedded systems

    A formal framework for specification-based embedded real-time system engineering

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (v. 2, p. 517-545).The increasing size and complexity of modern software-intensive systems present novel challenges when engineering high-integrity artifacts within aggressive budgetary constraints. Among these challenges, ensuring confidence in the engineered system, through validation and verification activities, represents the high cost item on many projects. The expensive nature of engineering high-integrity systems using traditional approaches can be partly attributed to the lack of analysis facilities during the early phases of the lifecycle, causing the validation and verification activities to begin too late in the engineering lifecycle. Other challenges include the management of complexity, opportunities for reuse without compromising confidence, and the ability to trace system features across lifecycle phases. The use of models as a specification mechanism provides an approach to mitigate complexity through abstraction. Furthermore, if the specification approach has formal underpinnings, the use of models can be leveraged to automate engineering activities such as formal analysis and test case generation. The research presented in this thesis proposes an engineering framework which addresses the high cost of validation and verification activities through specification-based system engineering. More specifically, the framework provides an integrated approach to embedded real-time system engineering which incorporates specification, simulation, formal verification, and test-case generation. The framework aggregates the state-of-the-art in individual software engineering disciplines to provide an end-to-end approach to embedded real-time system engineering. The key aspects of the framework include: * A novel specification language, the Timed Abstract State Machine (TASM) language, which extends the theory of Abstract State Machines (ASM).(cont.) The TASM language is a literate formal specification language which can be applied and multiple levels of abstraction and which can express the three key aspects of embedded real-time systems - function, time, and resources. * Automated verification capabilities achieved through the integration of mature analysis engines, namely the UPPAAL tool suite and the SAT4J SAT solver. The verification capabilities provided by the framework include completeness and consistency verification, model checking, execution time analysis, and resource consumption analysis. * Bi-directional traceability of model features across levels of abstraction and lifecycle phases. Traceability is achieved syntactically through archetypical refinement types; each refinement type provides correctness criteria, which, if met, guarantee semantic integrity through the refinement. * Automated test case generation capabilities for unit testing, integration testing, and regression testing. Unit test cases are generated to achieve TASM specification coverage through the rule coverage criterion. Integration test case generation is achieved through the hierarchical composition of unit test cases. Regression test case generation is achieved by leveraging the bi-directional traceability of model features. The framework is implemented into an integrated tool suite, the TASM toolset, which incorporates the UPPAAL tool suite and the SAT4J SAT solver. The toolset and framework are evaluated through experimentation on three industrial case studies - an automated manufacturing system, a "drive-by-wire" system used at a major automotive manufacturer, and a scripting environment used on the International Space Station.by Martin Ouimet.Ph.D

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models

    Get PDF
    Matlab/Simulink is a development and simulation language that is widely used by the Cyber-Physical System (CPS) industry to model dynamical systems. There are two mainstream approaches to verify CPS Simulink models: model testing that attempts to identify failures in models by executing them for a number of sampled test inputs, and model checking that attempts to exhaustively check the correctness of models against some given formal properties. In this paper, we present an industrial Simulink model benchmark, provide a categorization of different model types in the benchmark, describe the recurring logical patterns in the model requirements, and discuss the results of applying model checking and model testing approaches to identify requirements violations in the benchmarked models. Based on the results, we discuss the strengths and weaknesses of model testing and model checking. Our results further suggest that model checking and model testing are complementary and by combining them, we can significantly enhance the capabilities of each of these approaches individually. We conclude by providing guidelines as to how the two approaches can be best applied together.Comment: 10 pages + 2 page reference
    • …
    corecore