2,128 research outputs found

    Language Design for Reactive Systems: On Modal Models, Time, and Object Orientation in Lingua Franca and SCCharts

    Get PDF
    Reactive systems play a crucial role in the embedded domain. They continuously interact with their environment, handle concurrent operations, and are commonly expected to provide deterministic behavior to enable application in safety-critical systems. In this context, language design is a key aspect, since carefully tailored language constructs can aid in addressing the challenges faced in this domain, as illustrated by the various concurrency models that prevent the known pitfalls of regular threads. Today, many languages exist in this domain and often provide unique characteristics that make them specifically fit for certain use cases. This thesis evolves around two distinctive languages: the actor-oriented polyglot coordination language Lingua Franca and the synchronous statecharts dialect SCCharts. While they take different approaches in providing reactive modeling capabilities, they share clear similarities in their semantics and complement each other in design principles. This thesis analyzes and compares key design aspects in the context of these two languages. For three particularly relevant concepts, it provides and evaluates lean and seamless language extensions that are carefully aligned with the fundamental principles of the underlying language. Specifically, Lingua Franca is extended toward coordinating modal behavior, while SCCharts receives a timed automaton notation with an efficient execution model using dynamic ticks and an extension toward the object-oriented modeling paradigm

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Learning and Control of Dynamical Systems

    Get PDF
    Despite the remarkable success of machine learning in various domains in recent years, our understanding of its fundamental limitations remains incomplete. This knowledge gap poses a grand challenge when deploying machine learning methods in critical decision-making tasks, where incorrect decisions can have catastrophic consequences. To effectively utilize these learning-based methods in such contexts, it is crucial to explicitly characterize their performance. Over the years, significant research efforts have been dedicated to learning and control of dynamical systems where the underlying dynamics are unknown or only partially known a priori, and must be inferred from collected data. However, much of these classical results have focused on asymptotic guarantees, providing limited insights into the amount of data required to achieve desired control performance while satisfying operational constraints such as safety and stability, especially in the presence of statistical noise. In this thesis, we study the statistical complexity of learning and control of unknown dynamical systems. By utilizing recent advances in statistical learning theory, high-dimensional statistics, and control theoretic tools, we aim to establish a fundamental understanding of the number of samples required to achieve desired (i) accuracy in learning the unknown dynamics, (ii) performance in the control of the underlying system, and (iii) satisfaction of the operational constraints such as safety and stability. We provide finite-sample guarantees for these objectives and propose efficient learning and control algorithms that achieve the desired performance at these statistical limits in various dynamical systems. Our investigation covers a broad range of dynamical systems, starting from fully observable linear dynamical systems to partially observable linear dynamical systems, and ultimately, nonlinear systems. We deploy our learning and control algorithms in various adaptive control tasks in real-world control systems and demonstrate their strong empirical performance along with their learning, robustness, and stability guarantees. In particular, we implement one of our proposed methods, Fourier Adaptive Learning and Control (FALCON), on an experimental aerodynamic testbed under extreme turbulent flow dynamics in a wind tunnel. The results show that FALCON achieves state-of-the-art stabilization performance and consistently outperforms conventional and other learning-based methods by at least 37%, despite using 8 times less data. The superior performance of FALCON arises from its physically and theoretically accurate modeling of the underlying nonlinear turbulent dynamics, which yields rigorous finite-sample learning and performance guarantees. These findings underscore the importance of characterizing the statistical complexity of learning and control of unknown dynamical systems.</p

    Modern meat: the next generation of meat from cells

    Get PDF
    Modern Meat is the first textbook on cultivated meat, with contributions from over 100 experts within the cultivated meat community. The Sections of Modern Meat comprise 5 broad categories of cultivated meat: Context, Impact, Science, Society, and World. The 19 chapters of Modern Meat, spread across these 5 sections, provide detailed entries on cultivated meat. They extensively tour a range of topics including the impact of cultivated meat on humans and animals, the bioprocess of cultivated meat production, how cultivated meat may become a food option in Space and on Mars, and how cultivated meat may impact the economy, culture, and tradition of Asia

    DESIGN AND VERIFICATION OF AUTONOMOUS SYSTEMS IN THE PRESENCE OF UNCERTAINTIES

    Get PDF
    Autonomous Systems offer hope towards moving away from mechanized, unsafe, manual, often inefficient practices. The last decade has seen several small, but important, steps towards making this dream into reality. These advancements have helped us to achieve limited autonomy in several places, such as, driving, factory floors, surgeries, wearables, and home assistants, etc. Nevertheless, autonomous systems are required to operate in a wide range of environments with uncertainties (viz., sensor errors, timing errors, dynamic nature of the environment, etc.). Such environmental uncertainties, even when present in small amounts, can have drastic impact on the safety of the system—thus hampering the goal of achieving higher degree of autonomy, especially in safety critical domains. To this end, the dissertation shall discuss formaltechniques that are able to verify and design autonomous systems for safety, even under the presence of such uncertainties, allowing for their trustworthy deployment in the real world. Specifically, the dissertation shall discuss monitoring techniques for autonomous systems from available (noisy) logs, and safety-verification techniques of autonomous system controllers under timing uncertainties. Secondly, using heterogeneous learning-based cloud computing models that can balance uncertainty in output and computation cost, the dissertation will present techniques for designing safe and performance-optimal autonomous systems.Doctor of Philosoph

    Towards light-driven catalysis in block copolymer micelles

    Get PDF
    Im Rahmen dieser Arbeit wurden die Synthese, Charakterisierung und Untersuchungen polymerbasierter, sogenannter „weicher“ Materie als Matrizen für lichtgetriebene Redoxreaktionen behandelt. Der erste Teil dieser Arbeit umfasste die Präparation von pH-responsiven Mizellen in Wasser auf Grundlage von maßgeschneiderten, amphiphilen Blockcopolymeren, wobei unter anderem die im hydrophilen Teil vorhandenen Liganden zur Anbindung von Übergangsmetallkomplexen genutzt wurden. Auf diese Weise konnten (photo)katalytisch aktive Zentren innerhalb der pH-sensitiven Corona der Mizellen integriert werden. Mit diesem Ansatz war es möglich, mittels Konformationsänderungen der Corona der Mizellen deren Aktivität in verschiedenen, photokatalytischen Systemen experimentell zu kontrollieren und mit theoretischen Modellen zu analysieren. Der zweite Teil dieser Abhandlung widmete sich der Verwendung eines alternativen, polaren und funktionalisierbaren Monomer zum Aufbau analoger Blockcopolymerarchitekturen in methanolischen Lösungen sowie einer Anwendung in photokatalytischen Prozessen. Es ließen sich auf der chemischen Struktur basierende Indizien einer weit über die bloße mechanische Integration hinausreichende Funktion der Matrix feststellen. Dies wurde auch durch eine gesamtheitliche Betrachtung beider Systeme herausgearbeitet. Der dritte Teil dieser Arbeit fokussierte sich auf photokatalytische Modellsysteme, um Fallstudien zur Reproduzierbarkeit in einem modularen Photoreaktor durchzuführen. Ein weiteres Modellsystem wurde für eine didaktische Anwendung zugänglich gemacht. Mit dieser Arbeit war es möglich einen substanziellen Beitrag zur weichen Materie-vermittelten lichtgetriebenen Katalyse zu leisten. Dies geschah sowohl durch die Präsentation von Konzepten zur Integration derartiger Systeme in weicher Materie als auch der resultierenden Möglichkeit stoffliche und energetische Mechanismen in solchen Matrizen nachzuvollziehen

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches

    Reinforcement Learning Curricula as Interpolations between Task Distributions

    Get PDF
    In the last decade, the increased availability of powerful computing machinery has led to an increasingly widespread application of machine learning methods. Machine learning has been particularly successful when large models, typically neural networks with an ever-increasing number of parameters, can leverage vast data to make predictions. While reinforcement learning (RL) has been no exception from this development, a distinguishing feature of RL is its well-known exploration-exploitation trade-off, whose optimal solution – while possible to model as a partially observable Markov decision process – evades computation in all but the simplest problems. Consequently, it seems unsurprising that notable demonstrations of reinforcement learning, such as an RL-based Go agent (AlphaGo) by Deepmind beating the professional Go player Lee Sedol, relied both on the availability of massive computing capabilities and specific forms of regularization that facilitate learning. In the case of AlphaGo, this regularization came in the form of self-play, enabling learning by interacting with gradually more proficient opponents. In this thesis, we develop techniques that, similarly to the concept of self-play of AlphaGo, improve the learning performance of RL agents by training on sequences of increasingly complex tasks. These task sequences are typically called curricula and are known to side-step problems such as slow learning or convergence to poor behavior that may occur when directly learning in complicated tasks. The algorithms we develop in this thesis create curricula by minimizing distances or divergences between probability distributions of learning tasks, generating interpolations between an initial distribution of easy learning tasks and a target task distribution. Apart from improving the learning performance of RL agents in experiments, developing methods that realize curricula as interpolations between task distributions results in a nuanced picture of key aspects of successful reinforcement learning curricula. In Chapter 1, we start this thesis by introducing required reinforcement learning notation and then motivating curriculum reinforcement learning from the perspective of continuation methods for non-linear optimization. Similar to curricula for reinforcement learning agents, continuation methods have been used in non-linear optimization to solve challenging optimization problems. This similarity provides an intuition about the effect of the curricula we aim to generate and their limits. In Chapter 2, we transfer the concept of self-paced learning, initially proposed in the supervised learning community, to the problem of RL, showing that an automated curriculum generation for RL agents can be motivated by a regularized RL objective. This regularized RL objective implies generating a curriculum as a sequence of task distributions that trade off the expected agent performance against similarity to a specified distribution of target tasks. This view on curriculum RL contrasts existing approaches, as it motivates curricula via a regularized RL objective instead of generating them from a set of assumptions about an optimal curriculum. In experiments, we show that an approximate implementation of the aforementioned curriculum – that restricts the interpolating task distribution to a Gaussian – results in improved learning performance compared to regular reinforcement learning, matching or surpassing the performance of existing curriculum-based methods. Subsequently, Chapter 3 builds up on the intuition of curricula as sequences of interpolating task distributions established in Chapter 2. Motivated by using more flexible task distribution representations, we show how parametric assumptions play a crucial role in the empirical success of the previous approach and subsequently uncover key ingredients that enable the generation of meaningful curricula without assuming a parametric model of the task distributions. One major ingredient is an explicit notion of task similarity via a distance function of two Markov Decision Processes. We turn towards optimal transport theory, allowing for flexible particle-based representations of the task distributions while properly considering the newly introduced metric structure of the task space. Combined with other improvements to our first method, such as a more aggressive restriction of the curriculum to tasks that are not too hard for the agent, the resulting approach delivers consistently high learning performance in multiple experiments. In the final Chapter 4, we apply the refined method of Chapter 3 to a trajectory-tracking task, in which we task an RL agent to follow a three-dimensional reference trajectory with the tip of an inverted pendulum mounted on a Barrett Whole Arm Manipulator. The access to only positional information results in a partially observable system that, paired with its inherent instability, underactuation, and non-trivial kinematic structure, presents a challenge for modern reinforcement learning algorithms, which we tackle via curricula. The technically infinite-dimensional task space of target trajectories allows us to probe the developed curriculum learning method for flaws that have not surfaced in the rather low-dimensional experiments of the previous chapters. Through an improved optimization scheme that better respects the non-Euclidean structure of target trajectories, we reliably generate curricula of trajectories to be tracked, resulting in faster and more robust learning compared to an RL baseline that does not exploit this form of structured learning. The learned policy matches the performance of an optimal control baseline on the real system, demonstrating the potential of curriculum RL to learn state estimation and control for non-linear tracking tasks jointly. In summary, this thesis introduces a perspective on reinforcement learning curricula as interpolations between task distributions. The methods developed under this perspective enjoy a precise formulation as optimization problems and deliver empirical benefits throughout experiments. Building upon this precise formulation may allow future work to advance the formal understanding of reinforcement learning curricula and, with that, enable the solution of challenging decision-making and control problems with reinforcement learning

    Consensual Resilient Control: Stateless Recovery of Stateful Controllers

    Get PDF
    Safety-critical systems have to absorb accidental and malicious faults to obtain high mean-times-to-failures (MTTFs). Traditionally, this is achieved through re-execution or replication. However, both techniques come with significant overheads, in particular when cold-start effects are considered. Such effects occur after replicas resume from checkpoints or from their initial state. This work aims at improving on the performance of control-task replication by leveraging an inherent stability of many plants to tolerate occasional control-task deadline misses and suggests masking faults just with a detection quorum. To make this possible, we have to eliminate cold-start effects to allow replicas to rejuvenate during each control cycle. We do so, by systematically turning stateful controllers into instants that can be recovered in a stateless manner. We highlight the mechanisms behind this transformation, how it achieves consensual resilient control, and demonstrate on the example of an inverted pendulum how accidental and maliciously-induced faults can be absorbed, even if control tasks run in less predictable environments
    • …
    corecore