11,180 research outputs found

    Pattern Reification as the Basis for Description-Driven Systems

    Full text link
    One of the main factors driving object-oriented software development for information systems is the requirement for systems to be tolerant to change. To address this issue in designing systems, this paper proposes a pattern-based, object-oriented, description-driven system (DDS) architecture as an extension to the standard UML four-layer meta-model. A DDS architecture is proposed in which aspects of both static and dynamic systems behavior can be captured via descriptive models and meta-models. The proposed architecture embodies four main elements - firstly, the adoption of a multi-layered meta-modeling architecture and reflective meta-level architecture, secondly the identification of four data modeling relationships that can be made explicit such that they can be modified dynamically, thirdly the identification of five design patterns which have emerged from practice and have proved essential in providing reusable building blocks for data management, and fourthly the encoding of the structural properties of the five design patterns by means of one fundamental pattern, the Graph pattern. A practical example of this philosophy, the CRISTAL project, is used to demonstrate the use of description-driven data objects to handle system evolution.Comment: 20 pages, 10 figure

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    An Object-Oriented Framework for Explicit-State Model Checking

    Get PDF
    This paper presents a conceptual architecture for an object-oriented framework to support the development of formal veriļ¬cation tools (i.e. model checkers). The objective of the architecture is to support the reuse of algorithms and to encourage a modular design of tools. The conceptual framework is accompanied by a C++ implementation which provides reusable algorithms for the simulation and veriļ¬cation of explicit-state models as well as a model representation for simple models based on guard-based process descriptions. The framework has been successfully used to develop a model checker for a subset of PROMELA

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach

    Towards a methodology for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a methodology for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. We consider the failure detection and management function for engine control systems as an application domain where product line engineering is useful. The methodology produces a generic requirement set in our, UML based, formal notation, UML-B. The formal verification both of the generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools

    Reconciling a component and process view

    Full text link
    In many cases we need to represent on the same abstraction level not only system components but also processes within the system, and if for both representation different frameworks are used, the system model becomes hard to read and to understand. We suggest a solution how to cover this gap and to reconcile component and process views on system representation: a formal framework that gives the advantage of solving design problems for large-scale component systems.Comment: Preprint, 7th International Workshop on Modeling in Software Engineering (MiSE) at ICSE 201

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ā€˜A software architecture should be a composition of specializations of knowledge domainsā€™. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience
    • ā€¦
    corecore