19,698 research outputs found

    Semantic Interpretation of User Queries for Question Answering on Interlinked Data

    Get PDF
    The Web of Data contains a wealth of knowledge belonging to a large number of domains. Retrieving data from such precious interlinked knowledge bases is an issue. By taking the structure of data into account, it is expected that upcoming generation of search engines is approaching to question answering systems, which directly answer user questions. But developing a question answering over these interlinked data sources is still challenging because of two inherent characteristics: First, different datasets employ heterogeneous schemas and each one may only contain a part of the answer for a certain question. Second, constructing a federated formal query across different datasets requires exploiting links between these datasets on both the schema and instance levels. In this respect, several challenges such as resource disambiguation, vocabulary mismatch, inference, link traversal are raised. In this dissertation, we address these challenges in order to build a question answering system for Linked Data. We present our question answering system Sina, which transforms user-supplied queries (i.e. either natural language queries or keyword queries) into conjunctive SPARQL queries over a set of interlinked data sources. The contributions of this work are as follows: 1. A novel approach for determining the most suitable resources for a user-supplied query from different datasets (disambiguation approach). We employed a Hidden Markov Model, whose parameters were bootstrapped with different distribution functions. 2. A novel method for constructing federated formal queries using the disambiguated resources and leveraging the linking structure of the underlying datasets. This approach essentially relies on a combination of domain and range inference as well as a link traversal method for constructing a connected graph, which ultimately renders a corresponding SPARQL query. 3. Regarding the problem of vocabulary mismatch, our contribution is divided into two parts, First, we introduce a number of new query expansion features based on semantic and linguistic inferencing over Linked Data. We evaluate the effectiveness of each feature individually as well as their combinations, employing Support Vector Machines and Decision Trees. Second, we propose a novel method for automatic query expansion, which employs a Hidden Markov Model to obtain the optimal tuples of derived words. 4. We provide two benchmarks for two different tasks to the community of question answering systems. The first one is used for the task of question answering on interlinked datasets (i.e. federated queries over Linked Data). The second one is used for the vocabulary mismatch task. We evaluate the accuracy of our approach using measures like mean reciprocal rank, precision, recall, and F-measure on three interlinked life-science datasets as well as DBpedia. The results of our accuracy evaluation demonstrate the effectiveness of our approach. Moreover, we study the runtime of our approach in its sequential as well as parallel implementations and draw conclusions on the scalability of our approach on Linked Data

    Open-Vocabulary Semantic Parsing with both Distributional Statistics and Formal Knowledge

    Full text link
    Traditional semantic parsers map language onto compositional, executable queries in a fixed schema. This mapping allows them to effectively leverage the information contained in large, formal knowledge bases (KBs, e.g., Freebase) to answer questions, but it is also fundamentally limiting---these semantic parsers can only assign meaning to language that falls within the KB's manually-produced schema. Recently proposed methods for open vocabulary semantic parsing overcome this limitation by learning execution models for arbitrary language, essentially using a text corpus as a kind of knowledge base. However, all prior approaches to open vocabulary semantic parsing replace a formal KB with textual information, making no use of the KB in their models. We show how to combine the disparate representations used by these two approaches, presenting for the first time a semantic parser that (1) produces compositional, executable representations of language, (2) can successfully leverage the information contained in both a formal KB and a large corpus, and (3) is not limited to the schema of the underlying KB. We demonstrate significantly improved performance over state-of-the-art baselines on an open-domain natural language question answering task.Comment: Re-written abstract and intro, other minor changes throughout. This version published at AAAI 201

    Ask Me Anything: Free-form Visual Question Answering Based on Knowledge from External Sources

    Full text link
    We propose a method for visual question answering which combines an internal representation of the content of an image with information extracted from a general knowledge base to answer a broad range of image-based questions. This allows more complex questions to be answered using the predominant neural network-based approach than has previously been possible. It particularly allows questions to be asked about the contents of an image, even when the image itself does not contain the whole answer. The method constructs a textual representation of the semantic content of an image, and merges it with textual information sourced from a knowledge base, to develop a deeper understanding of the scene viewed. Priming a recurrent neural network with this combined information, and the submitted question, leads to a very flexible visual question answering approach. We are specifically able to answer questions posed in natural language, that refer to information not contained in the image. We demonstrate the effectiveness of our model on two publicly available datasets, Toronto COCO-QA and MS COCO-VQA and show that it produces the best reported results in both cases.Comment: Accepted to IEEE Conf. Computer Vision and Pattern Recognitio
    • …
    corecore