29,647 research outputs found

    Efficient solvability of Hamiltonians and limits on the power of some quantum computational models

    Full text link
    We consider quantum computational models defined via a Lie-algebraic theory. In these models, specified initial states are acted on by Lie-algebraic quantum gates and the expectation values of Lie algebra elements are measured at the end. We show that these models can be efficiently simulated on a classical computer in time polynomial in the dimension of the algebra, regardless of the dimension of the Hilbert space where the algebra acts. Similar results hold for the computation of the expectation value of operators implemented by a gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field Hamiltonians and show that they are efficiently ("exactly") solvable by means of a Jacobi-like diagonalization method. Our results generalize earlier ones on fermionic linear optics computation and provide insight into the source of the power of the conventional model of quantum computation.Comment: 6 pages; no figure

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    The foundational legacy of ASL

    Get PDF
    Abstract. We recall the kernel algebraic specification language ASL and outline its main features in the context of the state of research on algebraic specification at the time it was conceived in the early 1980s. We discuss the most significant new ideas in ASL and the influence they had on subsequent developments in the field and on our own work in particular.
    • …
    corecore