2,292 research outputs found

    Modelling of power electronics controllers for harmonic analysis in power systems

    Get PDF
    The research work presented in this thesis is concerned with the modelling of this new generation of power electronics controllers with a view to conduct comprehensive power systems harmonic analyses. An issue of paramount importance in this research is the representation of the self-commutated valves used by the controllers addressed in this work. Such a representation is based on switching functions that enable the realization of flexible and comprehensive harmonic models. Modularity is another key issue of great importance in this research, and the model of the voltage source converter is used as the basic building block with which to assemble harmonic models of actual power systems controllers. In this research the complex Fourier series in the form of operational matrices was used to derive the harmonic models. Also, a novel methodology is presented in this thesis for conducting transient analysis of electric networks containing non-linearities and power electronic components. The methodology is termed the extended harmonic domain. This method is based on the use of time-dependent Fourier series, operational matrices, state-space representation and averaging methods. With this method, state-space equations for linear circuit, non-linear circuits, and power electronics controllers models are obtained. The state variables are the harmonic coefficients of x(t) instead of x(t) itself. The solution of the state-space equations gives the dynamic response of the harmonic coefficients of x(t). Moreover, a new harmonic power flow methodology, based on the instantaneous power flow balance concept, the harmonic domain, and Newton-Raphson method, is developed and explained in the thesis. This method is based on the instantaneous power balance as opposed to the active and reactive power balance, followed by traditional harmonic power flow methods. The power system and the power electronics controllers are modelled entirely in the harmonic domain

    Direct usage of photovoltaic solar panels to supply a freezer motor with variable DC input voltage

    Get PDF
    In this paper, a single-phase photovoltaic (PV) inverter fed by a boost converter to supply a freezer motor with variable DC input is investigated. The proposed circuit has two stages. Firstly, the DC output of the PV panel that varies between 150 and 300 V will be applied to the boost converter. The boost converter will boost the input voltage to a fixed 300 V DC. Next, this voltage is supplied to the single-phase full-bridge inverter to obtain 230 V AC. In the end, The output of the inverter will feed a freezer motor. The PV panels can be stand-alone or grid-connected. The grid-connected PV is divided into two categories, such as with a transformer and without a transformer, a transformer type has galvanic isolation resulting in increasing the security and also provides no further DC current toward the grid, but it is expensive, heavy and bulky. The transformerless type holds high efficiency and it is cheaper, but it suffers from leakage current between PV and the grid. This paper proposes a stand-alone direct use of PV to supply a freezer; therefore, no grid connection will result in no leakage current between the PV and Grid. The proposed circuit has some features such as no filtering circuit at the output of the inverter, no battery in the system, DC-link instead of AC link that reduces no-loads, having a higher efficiency, and holding enough energy in the DC-link capacitor to get the motor started. The circuit uses no transformers, thus, it is cheaper and has a smaller size. In addition, the system does not require a complex pulse width modulation (PWM) technique, because the motor can operate with a pulsed waveform. The control strategy uses the PWM signal with the desired timing. With this type of square wave, the harmonics (5th and 7th) of the voltage are reduced. The experimental and simulation results are presented to verify the feasibility of the proposed strategy

    Nonlinear energy-maximising optimal control of wave energy systems: A moment-based approach

    Get PDF
    Linear dynamics are virtually always assumed when designing optimal controllers for wave energy converters (WECs), motivated by both their simplicity and computational convenience. Nevertheless, unlike traditional tracking control applications, the assumptions under which the linearization of WEC models is performed are challenged by the energy-maximizing controller itself, which intrinsically enhances device motion to maximize power extraction from incoming ocean waves. \GSIn this article, we present a moment-based energy-maximizing control strategy for WECs subject to nonlinear dynamics. We develop a framework under which the objective function (and system variables) can be mapped to a finite-dimensional tractable nonlinear program, which can be efficiently solved using state-of-the-art nonlinear programming solvers. Moreover, we show that the objective function belongs to a class of generalized convex functions when mapped to the moment domain, guaranteeing the existence of a global energy-maximizing solution and giving explicit conditions for when a local solution is, effectively, a global maximizer. The performance of the strategy is demonstrated through a case study, where we consider (state and input-constrained) energy maximization for a state-of-the-art CorPower-like WEC, subject to different hydrodynamic nonlinearities

    Efficient and Robust Simulation, Modeling and Characterization of IC Power Delivery Circuits

    Get PDF
    As the Moore’s Law continues to drive IC technology, power delivery has become one of the most difficult design challenges. Two of the major components in power delivery are DC-DC converters and power distribution networks, both of which are time-consuming to simulate and characterize using traditional approaches. In this dissertation, we propose a complete set of solutions to efficiently analyze DC-DC converters and power distribution networks by finding a perfect balance between efficiency and accuracy. To tackle the problem, we first present a novel envelope following method based on a numerically robust time-delayed phase condition to track the envelopes of circuit states under a varying switching frequency. By adopting three fast simulation techniques, our proposed method achieves higher speedup without comprising the accuracy of the results. The robustness and efficiency of the proposed method are demonstrated using several DCDC converter and oscillator circuits modeled using the industrial standard BSIM4 transistor models. A significant runtime speedup of up to 30X with respect to the conventional transient analysis is achieved for several DC-DC converters with strong nonlinear switching characteristics. We then take another approach, average modeling, to enhance the efficiency of analyzing DC-DC converters. We proposed a multi-harmonic model that not only predicts the DC response but also captures the harmonics of arbitrary degrees. The proposed full-order model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. Furthermore, by continuously monitoring state variables, our model seamlessly transitions between continuous conduction mode and discontinuous conduction mode. The proposed model, when tested with a system decoupling technique, obtains up to 10X runtime speedups over transistor-level simulations with a maximum output voltage error that never exceeds 4%. Based on the multi-harmonic averaged model, we further developed the small-signal model that provides a complete characterization of both DC averages and higher-order harmonic responses. The proposed model captures important high-frequency overshoots and undershoots of the converter response, which are otherwise unaccounted for by the existing techniques. In two converter examples, the proposed model corrects the misleading results of the existing models by providing the truthful characterization of the overall converter AC response and offers important guidance for converter design and closed-loop control. To address the problem of time-consuming simulation of power distribution networks, we present a partition-based iterative method by integrating block-Jacobi method with support graph method. The former enjoys the ease of parallelization, however, lacks a direct control of the numerical properties of the produced partitions. In contrast, the latter operates on the maximum spanning tree of the circuit graph, which is optimized for fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our proposed method, the circuit partitioning is guided by the maximum spanning tree of the underlying circuit graph, offering essential guidance for achieving fast convergence. The resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from support graph theory while lending itself to straightforward parallelization as a partitionbased method. The experimental results on IBM power grid suite and synthetic power grid benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X over a state-of-the-art direct solver

    Regulation theory: review and digital regulation

    Get PDF
    This paper reviews system modelling and regulation loops design. Continuous and discrete time domains are presented. The concept of discrete time model is introduced and the choice of the sampling frequency is highlighted. This approach takes advantage of the digital controller’s capacity to treat complex algorithms. A general method to decouple multiinput, multi-output systems is described and illustrated with the LHC inner triplet powering system
    • …
    corecore