18 research outputs found

    Towards Model Checking Executable UML Specifications in mCRL2

    Get PDF
    We describe a translation of a subset of executable UML (xUML) into the process algebraic specification language mCRL2. This subset includes class diagrams with class generalisations, and state machines with signal and change events. The choice of these xUML constructs is dictated by their use in the modelling of railway interlocking systems. The long-term goal is to verify safety properties of interlockings modelled in xUML using the mCRL2 and LTSmin toolsets. Initial verification of an interlocking toy example demonstrates that the safety properties of model instances depend crucially on the run-to-completion assumptions

    A model-based test platform for rail signalling systems

    Get PDF

    Formal verification of a train traffic control system

    Get PDF

    Accelerated Verification of Concurrent Systems

    Get PDF

    Accelerated Verification of Concurrent Systems

    Get PDF

    JTorX: Exploring Model-Based Testing

    Get PDF
    The overall goal of the work described in this thesis is: ``To design a flexible tool for state-of-the-art model-based derivation and automatic application of black-box tests for reactive systems, usable both for education and outside an academic context.'' From this goal, we derive functional and non-functional design requirements. The core of the thesis is a discussion of the design, in which we show how the functional requirements are fulfilled. In addition, we provide evidence to validate the non-functional requirements, in the form of case studies and responses to a tool user questionnaire. We describe the overall architecture of our tool, and discuss three usage scenarios which are necessary to fulfill the functional requirements: random on-line testing, guided on-line testing, and off-line test derivation and execution. With on-line testing, test derivation and test execution takes place in an integrated manner: a next test step is only derived when it is necessary for execution. With random testing, during test derivation a random walk through the model is done. With guided testing, during test derivation additional (guidance) information is used, to guide the derivation through specific paths in the model. With off-line testing, test derivation and test execution take place as separate activities. In our architecture we identify two major components: a test derivation engine, which synthesizes test primitives from a given model and from optional test guidance information, and a test execution engine, which contains the functionality to connect the test tool to the system under test. We refer to this latter functionality as the ``adapter''. In the description of the test derivation engine, we look at the same three usage scenarios, and we discuss support for visualization, and for dealing with divergence in the model. In the description of the test execution engine, we discuss three example adapter instances, and then generalise this to a general adapter design. We conclude with a description of extensions to deal with symbolic treatment of data and time

    Using Model Transformation to Generate Graphical Counter-Examples for the Formal Analysis of xUML Models

    Get PDF

    Symbolic Reachability Analysis of B through ProB and LTSmin

    Get PDF
    We present a symbolic reachability analysis approach for B that can provide a significant speedup over traditional explicit state model checking. The symbolic analysis is implemented by linking ProB to LTSmin, a high-performance language independent model checker. The link is achieved via LTSmin's PINS interface, allowing ProB to benefit from LTSmin's analysis algorithms, while only writing a few hundred lines of glue-code, along with a bridge between ProB and C using ZeroMQ. ProB supports model checking of several formal specification languages such as B, Event-B, Z and TLA. Our experiments are based on a wide variety of B-Method and Event-B models to demonstrate the efficiency of the new link. Among the tested categories are state space generation and deadlock detection; but action detection and invariant checking are also feasible in principle. In many cases we observe speedups of several orders of magnitude. We also compare the results with other approaches for improving model checking, such as partial order reduction or symmetry reduction. We thus provide a new scalable, symbolic analysis algorithm for the B-Method and Event-B, along with a platform to integrate other model checking improvements via LTSmin in the future
    corecore