38 research outputs found

    Towards Better Static Analysis Security Testing Methodologies

    Get PDF
    Software vulnerabilities have been a significant attack surface used in cyberattacks, which have been escalating recently. Software vulnerabilities have caused substantial damage, and thus there are many techniques to guard against them. Nevertheless, detecting and eliminating software vulnerabilities from the source code is the best and most effective solution in terms of protection and cost. Static Analysis Security Testing (SAST) tools spot vulnerabilities and help programmers to remove the vulnerabilities. The fundamental problem is that modern software continues to evolve and shift, making detecting vulnerabilities more difficult. Hence, this thesis takes a step toward highlighting the features required to be present in the SAST tools to address software vulnerabilities in modern software. The thesis’s end goal is to introduce SAST methods and tools to detect the dominant type of software vulnerabilities in modern software. The investigation first focuses on state-of-theart SAST tools when working with large-scale modern software. The research examines how different state-of-the-art SAST tools react to different types of warnings over time, and measures SAST tools precision of different types of warnings. The study presumption is that the SAST tools’ precision can be obtained from studying real-world projects’ history and SAST tools that generated warnings over time. The empirical analysis in this study then takes a further step to look at the problem from a different angle, starting at the real-world vulnerabilities detected by individuals and published in well-known vulnerabilities databases. Android application vulnerabilities are used as an example of modern software vulnerabilities. This study aims to measure the recall of SAST tools when they work with modern software vulnerabilities and understand how software vulnerabilities manifest in the real world. We find that buffer errors that belong to the input validation and representation class of vulnerability dominate modern software. Also, we find that studied state-of-the-art SAST tools failed to identify real-world vulnerabilities. To address the issue of detecting vulnerabilities in modern software, we introduce two methodologies. The first methodology is a coarse-grain method that targets helping taint static analysis methods to tackle two aspects of the complexity of modern software. One aspect is that one vulnerability can be scattered across different languages in a single application making the analysis harder to achieve. The second aspect is that the number of sources and sinks is high and increasing over time, which can be hard for taint analysis to cover such a high number of sources and sinks. We implement the proposed methodology in a tool called Source Sink (SoS) that filters out the source and sink pairs that do not have feasible paths. Then, another fine-grain methodology focuses on discovering buffer errors that occur in modern software. The method performs taint analysis to examine the reachability between sources and sinks and looks for "validators" that validates the untrusted input. We implemented methodology in a tool called Buffer Error Finder (BEFinder)

    Bringing Model Checking Closer To Practical Software Engineering

    Get PDF
    Bal, H.E. [Promotor]Templon, J.A. [Copromotor]Willemse, T.A.C. [Copromotor

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers
    corecore