37,483 research outputs found

    Spinal Test Suites for Software Product Lines

    Full text link
    A major challenge in testing software product lines is efficiency. In particular, testing a product line should take less effort than testing each and every product individually. We address this issue in the context of input-output conformance testing, which is a formal theory of model-based testing. We extend the notion of conformance testing on input-output featured transition systems with the novel concept of spinal test suites. We show how this concept dispenses with retesting the common behavior among different, but similar, products of a software product line.Comment: In Proceedings MBT 2014, arXiv:1403.704

    Supporting reinterpretation in computer-aided conceptual design

    Get PDF
    This paper presents research that aims to inform the development of computational tools that better support design exploration and idea transformation - key objectives in conceptual design. Analyses of experimental data from two fields - product design and architecture - suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules defined within a shape grammar. Such rules can provide a basis for the generation of alternative design concepts and they have informed the development of a prototype shape synthesis system that supports dynamic reinterpretation of shapes in design activity. The notion of 'sub-shapes' is introduced and the significance of these to perception, recognition and the development of emergent structures is discussed. The paper concludes with some speculation on how such a system might find application in a range of design fields

    Model-Based Development of Distributed Embedded Systems by the Example of the Scicos/SynDEx Framework

    Full text link
    The embedded systems engineering industry faces increasing demands for more functionality, rapidly evolving components, and shrinking schedules. Abilities to quickly adapt to changes, develop products with safe design, minimize project costs, and deliver timely are needed. Model-based development (MBD) follows a separation of concerns by abstracting systems with an appropriate intensity. MBD promises higher comprehension by modeling on several abstraction-levels, formal verification, and automated code generation. This thesis demonstrates MBD with the Scicos/SynDEx framework on a distributed embedded system. Scicos is a modeling and simulation environment for hybrid systems. SynDEx is a rapid prototyping integrated development environment for distributed systems. Performed examples implement well-known control algorithms on a target system containing several networked microcontrollers, sensors, and actuators. The addressed research question tackles the feasibility of MBD for medium-sized embedded systems. In the case of single-processor applications experiments show that the comforts of tool-provided simulation, verification, and code-generation have to be weighed against an additional memory consumption in dynamic and static memory compared to a hand-written approach. Establishing a near-seamless modeling-framework with Scicos/SynDEx is expensive. An increased development effort indicates a high price for developing single applications, but might pay off for product families. A further drawback was that the distributed code generated with SynDEx could not be adapted to microcontrollers without a significant alteration of the scheduling tables. The Scicos/SynDEx framework forms a valuable tool set that, however, still needs many improvements. Therefore, its usage is only recommended for experimental purposes.Comment: 146 pages, Master's Thesi

    Towards a methodology for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a methodology for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. We consider the failure detection and management function for engine control systems as an application domain where product line engineering is useful. The methodology produces a generic requirement set in our, UML based, formal notation, UML-B. The formal verification both of the generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools

    Towards a method for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a method for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. Our chosen application domain is the failure detection and management function for engine control systems: here generic requirements drive a software product line of target systems. A pilot formal specification and design exercise is undertaken on a small (twosensor) system element. This exercise has a number of aims: to support the domain analysis, to gain a view of appropriate design abstractions, for a B novice to gain experience in the B method and tools, and to evaluate the usability and utility of that method.We also present a prototype method for the production and verification of a generic requirement set in our UML-based formal notation, UML-B, and tooling developed in support. The formal verification both of the structural generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools
    • ā€¦
    corecore