1,836 research outputs found

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    BlueSky: Combining Task Planning and Activity-Centric Access Control for Assistive Humanoid Robots

    Get PDF
    In the not too distant future, assistive humanoid robots will provide versatile assistance for coping with everyday life. In their interactions with humans, not only safety, but also security and privacy issues need to be considered. In this Blue Sky paper, we therefore argue that it is time to bring task planning and execution as a well-established field of robotics with access and usage control in the field of security and privacy closer together. In particular, the recently proposed activity-based view on access and usage control provides a promising approach to bridge the gap between these two perspectives. We argue that humanoid robots provide for specific challenges due to their task-universality and their use in both, private and public spaces. Furthermore, they are socially connected to various parties and require policy creation at runtime due to learning. We contribute first attempts on the architecture and enforcement layer as well as on joint modeling, and discuss challenges and a research roadmap also for the policy and objectives layer. We conclude that the underlying combination of decentralized systems\u27 and smart environments\u27 research aspects provides for a rich source of challenges that need to be addressed on the road to deployment

    The RobotCub Approach to the Development of Cognition

    Get PDF
    This paper elaborates on the workplan of an initiative in embodied cognition: RobotCub. Our goal here is to provide background and to motivate our long-term plan of empirical research including brain and robotic sciences following the principles of epigenetic robotics

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry

    Enabling Human-Robot Collaboration via Holistic Human Perception and Partner-Aware Control

    Get PDF
    As robotic technology advances, the barriers to the coexistence of humans and robots are slowly coming down. Application domains like elderly care, collaborative manufacturing, collaborative manipulation, etc., are considered the need of the hour, and progress in robotics holds the potential to address many societal challenges. The future socio-technical systems constitute of blended workforce with a symbiotic relationship between human and robot partners working collaboratively. This thesis attempts to address some of the research challenges in enabling human-robot collaboration. In particular, the challenge of a holistic perception of a human partner to continuously communicate his intentions and needs in real-time to a robot partner is crucial for the successful realization of a collaborative task. Towards that end, we present a holistic human perception framework for real-time monitoring of whole-body human motion and dynamics. On the other hand, the challenge of leveraging assistance from a human partner will lead to improved human-robot collaboration. In this direction, we attempt at methodically defining what constitutes assistance from a human partner and propose partner-aware robot control strategies to endow robots with the capacity to meaningfully engage in a collaborative task
    corecore