11,822 research outputs found

    Timed Automata Models for Principled Composition of Middleware

    Get PDF
    Middleware for Distributed Real-time and Embedded (DRE) systems has grown more and more complex in recent years due to the varying functional and temporal requirements of complex real-time applications. To enable DRE middleware to be configured and customized to meet the demands of different applications, a body of ongoing research has focused on applying model-driven development techniques to developing QoS-enabled middleware. While current approaches for modeling middleware focus on easing the task of as-assembling, deploying and configuring middleware and middleware-based applications, a more formal basis for correct middleware composition and configuration in the context of individual applications is needed. While the modeling community has used application-level formal models that are more abstract to uncover certain flaws in system design, a more fundamental and lower-level set of models is needed to be able to uncover more subtle safety and timing errors introduced by interference between application computations, particularly in the face of alternative concurrency strategies in the middleware layer. In this research, we have examined how detailed formal models of lower-level middle-ware building blocks provide an appropriate level of abstraction both for modeling and synthesis of a variety of kinds of middleware from these building blocks. When combined with model checking techniques, these formal models can help developers in composing correct combinations of middleware mechanisms, and configuring those mechanisms for each particular application

    Adding an ontology to a standardized QoS-based MAS middleware

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-02481-8_12In a Multi-Agent system, middleware is one of the components used to isolate control and communications. The use of standards in the implementation of an intelligent distributed system is always advantageous. This paper presents a middleware that provides support to a multi-agent system. Middleware is based on the standard Data Distribution Services (DDS), proposed by Object Management Group (OGM). Middleware organizes information by tree based ontology and provides a set of quality of service policies that agents can use to increase efficiency. DDS provides a set of quality of service policy. Joining quality of service policy and the ontology allows getting many advantages, among others the possibility of to conceal some details of the communications system to agents, the correct location of the agents in the distributed system, or the monitoring agents in terms of quality of service. For modeling the middleware architecture it has used UML class diagrams. As an example it has presented the implementation of a mobile robot navigation system through agents that model behaviors.The MAS architecture described in this article is a part of the coordinated project SIDIRELI: Distributed Systems with Limited Resources. Control Kernel and Coordination. Education and Science Department, Spanish Government. CICYT: MICINN: DPI2008-06737-C02-01/02.Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE. (2009). Adding an ontology to a standardized QoS-based MAS middleware. En Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. Springer. 83-90. doi:10.1007/978-3-642-02481-8_12S8390Coulouris, G., Dollimore, J., Kindberg, T.: Distributed systems, concepts and design, 3rd edn. Addison Wesley, Reading (2001)Hapner, M., Sharma, R., Fialli, J., Stout, K.: JMS specification, vol. 1.1. Sun Microsystems Inc., Santa Clara (2002)Lewis, R.: Advanced Messaging Applications with MSMQ and MQ Series. Que Publishing (1999)OMG. Real-Time Corba Specification version 1.1. Document formal /02-08-02 (2002)FIPA. Specfication. Part 2, Agent Communication Language. Foundation for Intelligent Physical Agents (1997)Vogel, A., Kerherve, B., von Bochmann, G., Gecsei, J.: Distributed Multimedia and QoS: A Survey. IEEE Multimedia 2(2), 10–19 (1995)Smith, B.: Beyond concepts, or: Ontology as reality representation. In: Formal Ontology in Information Systems (FOIS 2004), pp. 73–84 (2004)Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal Human-Computer Studies 43(5-6), 907–928 (1995)Pardo-Castellote, G.: OMG Data-Distribution Service: architectural overview. In: Proceedings of 23rd International Conference on Distributed Computing Systems Workshops, Providence, USA, vols. 19-22, pp. 200–206 (2003)Object Management Group (OMG). Unified Modeling Language Specification, v1.4.2, ISO/IEC 19501 (2001)Poza, J.L., Posadas, J.I., Simó, J.E.: Distributed agent specification to an Intelligent Control Architecture. In: 6th International Workshop on Practical Applications of Agents and Multiagent Systems, Salamanca (2007)Poza, J.L., Posadas, J.l., Simó, J.E.: QoS-based middleware archi-tecture for distributed control systems. In: International Symposium on Distributed Computing and Artificial Intelligence, Salamanca (2008

    HLA high performance and real-time simulation studies with CERTI

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. Indeed, current HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to provide real-time capabilities to Run Time Infrastructures (RTI). This paper describes our approach focusing on achieving hard real-time properties for HLA federations through a complete state of the art on the related domain. Our paper also proposes a global bottom up approach from basic hardware and software basic requirements to experimental tests for validation of distributed real-time simulation with CERTI

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    Formal Aspects of Grid Brokering

    Full text link
    Coordination in distributed environments, like Grids, involves selecting the most appropriate services, resources or compositions to carry out the planned activities. Such functionalities appear at various levels of the infrastructure and in various means forming a blurry domain, where it is hard to see how the participating components are related and what their relevant properties are. In this paper we focus on a subset of these problems: resource brokering in Grid middleware. This paper aims at establishing a semantical model for brokering and related activities by defining brokering agents at three levels of the Grid middleware for resource, host and broker selection. The main contribution of this paper is the definition and decomposition of different brokering components in Grids by providing a formal model using Abstract State Machines
    corecore