40 research outputs found

    Modelling Clock Synchronization in the Chess gMAC WSN Protocol

    Get PDF
    We present a detailled timed automata model of the clock synchronization algorithm that is currently being used in a wireless sensor network (WSN) that has been developed by the Dutch company Chess. Using the Uppaal model checker, we establish that in certain cases a static, fully synchronized network may eventually become unsynchronized if the current algorithm is used, even in a setting with infinitesimal clock drifts

    Efficient Model Checking: The Power of Randomness

    Get PDF

    Efficient Emptiness Check for Timed B\"uchi Automata (Extended version)

    Full text link
    The B\"uchi non-emptiness problem for timed automata refers to deciding if a given automaton has an infinite non-Zeno run satisfying the B\"uchi accepting condition. The standard solution to this problem involves adding an auxiliary clock to take care of the non-Zenoness. In this paper, it is shown that this simple transformation may sometimes result in an exponential blowup. A construction avoiding this blowup is proposed. It is also shown that in many cases, non-Zenoness can be ascertained without extra construction. An on-the-fly algorithm for the non-emptiness problem, using non-Zenoness construction only when required, is proposed. Experiments carried out with a prototype implementation of the algorithm are reported.Comment: Published in the Special Issue on Computer Aided Verification - CAV 2010; Formal Methods in System Design, 201

    How to stop time stopping

    Get PDF
    Zeno-timelocks constitute a challenge for the formal verification of timed automata: they are difficult to detect, and the verification of most properties (e.g., safety) is only correct for timelock-free models. Some time ago, Tripakis proposed a syntactic check on the structure of timed automata: If a certain condition (called strong non-zenoness) is met by all the loops in a given automaton, then zeno-timelocks are guaranteed not to occur. Checking for strong non-zenoness is efficient, and compositional (if all components in a network of automata are strongly non-zeno, then the network is free from zeno-timelocks). Strong non-zenoness, however, is sufficient-only: There exist non-zeno specifications which are not strongly non-zeno. A TCTL formula is known that represents a sufficient-and-necessary condition for non-zenoness; unfortunately, this formula requires a demanding model-checking algorithm, and not all model-checkers are able to express it. In addition, this algorithm provides only limited diagnostic information. Here we propose a number of alternative solutions. First, we show that the compositional application of strong non-zenoness can be weakened: Some networks can be guaranteed to be free from Zeno-timelocks, even if not every component is strongly non-zeno. Secondly, we present new syntactic, sufficient-only conditions that complement strong non-zenoness. Finally, we describe a sufficient-and-necessary condition that only requires a simple form of reachability analysis. Furthermore, our conditions identify the cause of zeno-timelocks directly on the model, in the form of unsafe loops. We also comment on a tool that we have developed, which implements the syntactic checks on Uppaal models. The tool is also able to derive, from those unsafe loops in a given automaton (in general, an Uppaal model representing a product automaton of a given network), the reachability formulas that characterise the occurrence of zeno-timelocks. A modified version of the CSMA/CD protocol is used as a case-study

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Modelling and Analysis for Cyber-Physical Systems: An SMT-based approach

    Get PDF
    corecore