3,234 research outputs found

    Dependability modeling and optimization of triple modular redundancy partitioning for SRAM-based FPGAs

    Full text link
    SRAM-based FPGAs are popular in the aerospace industry for their field programmability and low cost. However, they suffer from cosmic radiation-induced Single Event Upsets (SEUs). Triple Modular Redundancy (TMR) is a well-known technique to mitigate SEUs in FPGAs that is often used with another SEU mitigation technique known as configuration scrubbing. Traditional TMR provides protection against a single fault at a time, while partitioned TMR provides improved reliability and availability. In this paper, we present a methodology to analyze TMR partitioning at early design stage using probabilistic model checking. The proposed formal model can capture both single and multiple-cell upset scenarios, regardless of any assumption of equal partition sizes. Starting with a high-level description of a design, a Markov model is constructed from the Data Flow Graph (DFG) using a specified number of partitions, a component characterization library and a user defined scrub rate. Such a model and exhaustive analysis captures all the considered failures and repairs possible in the system within the radiation environment. Various reliability and availability properties are then verified automatically using the PRISM model checker exploring the relationship between the scrub frequency and the number of TMR partitions required to meet the design requirements. Also, the reported results show that based on a known voter failure rate, it is possible to find an optimal number of partitions at early design stages using our proposed method.Comment: Published in Reliability Engineering & System Safety Volume 182, February 2019, Pages 107-11

    Validation of Ultrahigh Dependability for Software-Based Systems

    Get PDF
    Modern society depends on computers for a number of critical tasks in which failure can have very high costs. As a consequence, high levels of dependability (reliability, safety, etc.) are required from such computers, including their software. Whenever a quantitative approach to risk is adopted, these requirements must be stated in quantitative terms, and a rigorous demonstration of their being attained is necessary. For software used in the most critical roles, such demonstrations are not usually supplied. The fact is that the dependability requirements often lie near the limit of the current state of the art, or beyond, in terms not only of the ability to satisfy them, but also, and more often, of the ability to demonstrate that they are satisfied in the individual operational products (validation). We discuss reasons why such demonstrations cannot usually be provided with the means available: reliability growth models, testing with stable reliability, structural dependability modelling, as well as more informal arguments based on good engineering practice. We state some rigorous arguments about the limits of what can be validated with each of such means. Combining evidence from these different sources would seem to raise the levels that can be validated; yet this improvement is not such as to solve the problem. It appears that engineering practice must take into account the fact that no solution exists, at present, for the validation of ultra-high dependability in systems relying on complex software

    SRAM-Based FPGA Systems for Safety-Critical Applications: A Survey on Design Standards and Proposed Methodologies

    Get PDF
    As the ASIC design cost becomes affordable only for very large-scale productions, the FPGA technology is currently becoming the leading technology for those applications that require a small-scale production. FPGAs can be considered as a technology crossing between hardware and software. Only a small-number of standards for the design of safety-critical systems give guidelines and recommendations that take the peculiarities of the FPGA technology into consideration. The main contribution of this paper is an overview of the existing design standards that regulate the design and verification of FPGA-based systems in safety-critical application fields. Moreover, the paper proposes a survey of significant published research proposals and existing industrial guidelines about the topic, and collects and reports about some lessons learned from industrial and research projects involving the use of FPGA devices

    High-Level Analysis of the Impact of Soft-Faults in Cyberphysical Systems

    Get PDF
    As digital systems grow in complexity and are used in a broader variety of safety-critical applications, there is an ever-increasing demand for assessing the dependability and safety of such systems, especially when subjected to hazardous environments. As a result, it is important to identify and correct any functional abnormalities and component faults as early as possible in order to minimize performance degradation and to avoid potential perilous situations. Existing techniques often lack the capacity to perform a comprehensive and exhaustive analysis on complex redundant architectures, leading to less than optimal risk evaluation. Hence, an early analysis of dependability of such safety-critical applications enables designers to develop systems that meets high dependability requirements. Existing techniques in the field often lack the capacity to perform full system analyses due to state-explosion limitations (such as transistor and gate-level analyses), or due to the time and monetary costs attached to them (such as simulation, emulation, and physical testing). In this work we develop a system-level methodology to model and analyze the effects of Single Event Upsets (SEUs) in cyberphysical system designs. The proposed methodology investigates the impacts of SEUs in the entire system model (fault tree level), including SEU propagation paths, logical masking of errors, vulnerability to specific events, and critical nodes. The methodology also provides insights on a system's weaknesses, such as the impact of each component to the system's vulnerability, as well as hidden sources of failure, such as latent faults. Moreover, the proposed methodology is able to identify and categorize the system's components in order of criticality, and to evaluate different approaches to the mitigation of such criticality (in the form of different configurations of TMR) in order to obtain the most efficient mitigation solution available. The proposed methodology is also able to model and analyze system components individually (system component level), in order to more accurately estimate the component's vulnerability to SEUs. In this case, a more refined analysis of the component is conducted, which enables us to identify the source of the component's criticality. Thereafter, a second mitigation mechanic (internal to the component) takes place, in order to evaluate the gains and costs of applying different configurations of TMR to the component internally. Finally, our approach will draw a comparison between the results obtained at both levels of analysis in order to evaluate the most efficient way of improving the targeted system design

    Dependability assessment of by-wire control systems using fault injection

    Full text link
    This paper is focused on the validation by means of physical fault injection at pin-level of a time-triggered communication controller: the TTP/C versions C1 and C2. The controller is a commercial off-the-shelf product used in the design of by-wire systems. Drive-by-wire and fly-by-wire active safety controls aim to prevent accidents. They are considered to be of critical importance because a serious situation may directly affect user safety. Therefore, dependability assessment is vital in their design. This work was funded by the European project `Fault Injection for TTAÂż and it is divided into two parts. In the first part, there is a verification of the dependability specifications of the TTP communication protocol, based on TTA, in the presence of faults directly induced in communication lines. The second part contains a validation and improvement proposal for the architecture in case of data errors. Such errors are due to faults that occurred during writing (or reading) actions on memory or during data storage.Blanc Clavero, S.; Bonastre Pina, AM.; Gil, P. (2009). Dependability assessment of by-wire control systems using fault injection. Journal of Systems Architecture. 55(2):102-113. doi:10.1016/j.sysarc.2008.09.003S10211355

    NASA/SDIO Space Environmental Effects on Materials Workshop, part 2

    Get PDF
    The National Aeronautics and Space Administration (NASA) and the Strategic Defense Initiative Organization (SDIO) cosponsored a workshop on Space Environmental Effects on Materials. The joint workshop was designed to inform participants of the present state of knowledge regarding space environmental effects on materials and to identify knowledge gaps that prevent informed decisions on the best use of advanced materials in space for long duration NASA and SDIO missions. Establishing priorities for future ground based and space based materials research was a major goal of the workshop. The end product of the workshop was an assessment of the current state-of-the-art in space environmental effects on materials in order to develop a national plan for spaceflight experiments

    The Structured Process Modeling Method (SPMM) : what is the best way for me to construct a process model?

    Get PDF
    More and more organizations turn to the construction of process models to support strategical and operational tasks. At the same time, reports indicate quality issues for a considerable part of these models, caused by modeling errors. Therefore, the research described in this paper investigates the development of a practical method to determine and train an optimal process modeling strategy that aims to decrease the number of cognitive errors made during modeling. Such cognitive errors originate in inadequate cognitive processing caused by the inherent complexity of constructing process models. The method helps modelers to derive their personal cognitive profile and the related optimal cognitive strategy that minimizes these cognitive failures. The contribution of the research consists of the conceptual method and an automated modeling strategy selection and training instrument. These two artefacts are positively evaluated by a laboratory experiment covering multiple modeling sessions and involving a total of 149 master students at Ghent University

    Early validation of satellite COTS-on-board computing systems

    Get PDF
    International audienceThe competitive market of nano and micro satellites opens perspectives for use of COTS (Com-mercial Off-The-Shelf) electronic components. Current modular electronics design for embedded On-Board Computing systems (OBC) is being challenged by the integration of flexible Systems on Chip (SoC). The deployment of generic avionics and user/payload functionalities on these components is becoming increasingly complex, while Quality of Service must remain compliant with demanding requirements. It is therefore most important to estimate/evaluate those properties as early as possible, regarding a given ap-plication's deployment on a given COTS-based architecture. Model Based System Engineering (MBSE), while a leading practice in architecture description, may still require further study on its use for early evaluation , especially regarding analysis of emerging behaviors and qualitative model-based mapping of ap-plicative functions onto architectural platform. In this paper, we present methods to enhance MBSE design, helping the designer in evaluating candidate mappings and design choices by providing concrete quality measures. We focus on two aspects that were identified as critical in the ATIPPIC IRT project: first, the cost and conflicts in data communications in on-board and peripheral interconnects, which has a bottleneck impact on mapping choices; second, the availability of functions in case of resource failures (from solar radiations), to validate fault-mitigation techniques and estimate the (un)availability of the OBC system. We illustrate the approach on a simplified satellite model, abstracted from a design conceived in the ATIPPIC IRT project
    • …
    corecore