268 research outputs found

    Event-driven grammars: Relating abstract and concrete levels of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-007-0051-2In this work we introduce event-driven grammars, a kind of graph grammars that are especially suited for visual modelling environments generated by meta-modelling. Rules in these grammars may be triggered by user actions (such as creating, editing or connecting elements) and in their turn may trigger other user-interface events. Their combination with triple graph transformation systems allows constructing and checking the consistency of the abstract syntax graph while the user is building the concrete syntax model, as well as managing the layout of the concrete syntax representation. As an example of these concepts, we show the definition of a modelling environment for UML sequence diagrams. A discussion is also presented of methodological aspects for the generation of environments for visual languages with multiple views, its connection with triple graph grammars, the formalization of the latter in the double pushout approach and its extension with an inheritance concept.This work has been partially sponsored by the Spanish Ministry of Education and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678)

    Model transformation by graph transformation: A comparative study

    Full text link
    This is an electronic version of the paper presented at the Model Transformation in Practice, held in Montego Bay on 2005Graph transformation has been widely used for expressing model transformations. Especially transformations of visual models can be naturally formulated by graph transformations, since graphs are well suited to describe the underlying structures of models. Based on a common sample model transformation, four different model transformation approaches are presented which all perform graph transformations. At first, a basic solution is presented and crucial points of model transformations are indicated. Subsequent solutions focus mainly on the indicated problems. Finally, a first comparison of the chosen approaches to model transformation is presented where the main ingredients of each approach are summarized

    Conformance Analysis of Organizational Models in a new Enterprise Modeling Framework using Algebraic Graph Transformation - Extended Version

    Get PDF
    Organizational models play a key role in today's enterprise modeling. These models often show up as partial models produced by people with different conceptual understandings in a usually decentralized organization, where they are modeled in a distributed and non-synchronized fashion. For this reason, there is a first major need to organize partial organizational models within a suitable modeling framework, and there is a second major need to check their mutual conformance. This builds the basis to integrate the partial organizational models later on into one holistic model of the organization. Moreover, the partial models can be used for model checking certain security, risk, and compliance constraints. In order to satisfy the two major needs, this paper presents two mutually aligned contributions. The first one is a new enterprise modeling framework the EM-Cube. The second contribution is a new approach for checking conformance of models that are developed based on the suggested formal modeling technique associated with the proposed framework. In addition to that, we evaluate our potential solution against concrete requirements derived from a real-world scenario coming out of the finance industry

    Enforced generative patterns for the specification of the syntax and semantics of visual languages

    Full text link
    This is the author’s version of a work that was accepted for publication in Journal of Visual Languages and Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Visual Languages and Computing,19, 4 (2008) DO: 10.1016/j.jvlc.2008.04.004Selected Papers from IEEE Symposium on Visual Languages and Human Centric Computing 2007 (VL/HCC 2007)We present the new notion of enforced generative pattern, a structure that declares positive or negative conditions that must be satisfied by a model. Patterns are applied to transformation rules resulting in new rules that modify models according to the pattern specification. In the case of a negative pattern, an application condition is added to the rule. In the case of a positive one, the rule is modified to consider additional context in its left-hand side and to increase its effects. We have defined these patterns in an abstract setting, which enables their instantiation for different structures, like graphs, triple graphs and graph transformation rules. We apply the previous concepts to the specification of the syntax and semantics of visual languages. In particular, we show instantiations for: (i) graphs, with applications at the syntactical level; (ii) triple graphs, for the coordination of syntax and static semantics; and (iii) rules, for the incremental construction of execution rules. We present some examples that illustrate the usefulness of the combination of these three instantiations. In particular, we show the specification of environments for visual languages with token-holder semantics, discrete-event semantics and communication semantics.Work supported by the Spanish Ministry of Education and Science, projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN2006-09678). We thank the referees for their detailed and useful com- ments, which helped us in improving the paper

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    A formal framework for model management

    Full text link
    El Desarrollo de Software Dirigido por Modelos es una rama de la Ingeniería del Software en la que los artefactos software se representan como modelos para incrementar la productividad, calidady eficiencia económica en el proceso de desarrollo de software, donde un modelo proporciona una representación abstracta del código final de una aplicación. En este campo, la iniciativa Model-Driven Architecture (MDA), patrocinada por la OMG, está constituida por una familia de estándares industriales, entre los que se destacan: Meta-Object Facility (MOF), Unified Modeling Language (UML), Object Constraint Language (OCL), XML Metadata Interchange (XMI), y Query/Views/Transformations (QVT). Estos estándares proporcionan unas directrices comunes para herramientas basadas en modelos y para procesos de desarrollo de software dirigidos por modelos. Su objetivo consiste en mejorar la interoperabilidad entre marcos de trabajo ejecutables, en automatizar el proceso desarrollo de software de software y en proporcionar técnicas que eviten errores durante ese proceso. El estándar MOF describe un marco de trabajo genérico que permite definir la sintaxis abstracta de lenguajes de modelado. Este estándar persigue la definición de los conceptos básicos que son utilizados en procesos de desarrollo de software dirigidos por modelos: que es un modelo, que es un metamodelo, qué es reflexión en un marco de trabajo basado en MOF, etc. Sin embargo, la mayoría de estos conceptos carecen de una semántica formal en la versión actual del estándar MOF. Además, OCL se utiliza como un lenguage de definición de restricciones que permite añadir semántica a un metamodelo MOF. Desafortunadamente, la relación entre un metamodelo y sus restricciones OCL también carece de una semántica formal. Este hecho es debido, en parte, a que los metamodelos solo pueden ser definidos como dato en un marco de trabajo basado en MOF. El estándar MOF también proporciona las llamadas facilidades de reflexión de MOF (MOF ReflectiBoronat Moll, A. (2007). A formal framework for model management [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1964Palanci

    Enhanced Graph Rewriting Systems for Complex Software Domain

    Get PDF
    International audienceMethodologies for correct by construction reconfigurations can efficiently solve consistency issues in dynamic software architecture. Graph-based models are appropriate for designing such architectures and methods. At the same time, they may be unfit to characterize a system from a non functional perspective. This stems from efficiency and applicability limitations in handling time-varying characteristics and their related dependencies. In order to lift these restrictions, an extension to graph rewriting systems is proposed herein. The suitability of this approach, as well as the restraints of currently available ones, are illustrated, analysed and experimentally evaluated with reference to a concrete example. This investigation demonstrates that the conceived solution can: (i) express any kind of algebraic dependencies between evolving requirements and properties; (ii) significantly ameliorate the efficiency and scalability of system modifications with respect to classic methodologies; (iii) provide an efficient access to attribute values; (iv) be fruitfully exploited in software management systems; (v) guarantee theoretical properties of a grammar, like its termination

    Synchronisation of Model Visualisation and Code Generation Based on Model Transformation

    Get PDF
    The development, maintenance and documentation of complex systems is commonly supported by model-driven approaches where system properties are captured by visual models at different layers of abstraction and from different perspectives as proposed by the Object Management Group (OMG) and its model-driven architecture. Generally, a model is a concrete view on the system from a specific perspective in a particular domain. We focus on visual models in the form of diagrams and whose syntax is defined by domain-specific modelling languages (DSLs). Different models may represent different views on a system, i.e., they may be linked to each other by sharing a common set of information. Therefore, models that are expressed in one DSL may be transformed to interlinked models in other DSLs and furthermore, model updates may be synchronised between different domains. Concretely, this thesis presents the transformation and synchronisation of source code (abstract syntax trees, ASTs) written in the Satellite-Procedure & Execution Language (SPELL) to flow charts (code visualisation) and vice versa (code generation) as the result of an industrial case study. The transformation and synchronisation are performed based on existing approaches for model transformations and synchronisations between two domains in the theoretic framework of graph transformation where models are represented by graphs. Furthermore, extensions to existing approaches are presented for treating non-determinism in concurrent model synchronisations. Finally, the existing results for model transformations and synchronisations between two domains are lifted to the more general case of an arbitrary number of domains or models containing views, i.e., a model in one domain may be transformed to models in several domains or to all other views, respectively, and model updates in one domain may be synchronised to several other domains or to all other views, respectively

    Model Transformation For Validation Of Software Design

    Get PDF
    corecore