1,196 research outputs found

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Modeling Adaptive Middleware and Its Applications to Military Tactical Datalinks

    Get PDF
    Open systems solutions and techniques have become the de facto standard for achieving interoperability between disparate, large-scale, legacy software systems. A key technology among open systems solutions and techniques is middleware. Middleware, in general, is used to isolate applications from dependencies introduced by hardware, operating systems, and other low-level aspects of system architectures. While middleware approaches are or will be integrated into operational military systems, many open questions exist about the appropriate areas to applying middleware. Adaptive middleware is middleware that provides an application with a run-time adaptation strategy, based upon system-level interfaces and properties. Adaptive middleware is an example of an active applied research area. Adaptive middleware is being developed and applied to meet the ever-increasing challenges set forth by the next generation of mission-critical distributed real-time and embedded (DRE) systems. The driving force behind many next-generation DRE systems is the establishment of QoS requirements typically associated with workloads that vary dynamically. The Weapon System Open Architecture (WSOA), an adaptive middleware platform developed by Boeing, is modeled as a part of this research to determine the scalability of the architecture. The WSOA adaptive middleware was previously flight-tested with one tactical node, and the test results represent the performance baseline the architecture. The WSOA adaptive middleware is modeled with 1, 2, 4, 8 and 16 tactical nodes. The results of the modeling and simulation is that the WSOA adaptive middleware can achieve the performance baseline achieved during the original flight-test, in the cases of 1, 2, and 4 tactical nodes. In addition, the results of the modeling and simulation also demonstrate that the WSOA adaptive middleware cannot achiev

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    A domain-specific language based approach to component composition, error-detection, and fault prediction

    Get PDF
    Current methods of software production are resource-intensive and often require a number of highly skilled professionals. To develop a well-designed and effectively implemented system requires a large investment of resources, often numbering into millions of pounds. The time required may also prove to be prohibitive. However, many parts of the new systems being currently developed already exist, either in the form of whole or parts of existing systems. It is therefore attractive to reuseexisting code when developing new software, in order to reduce the time andresources required. This thesis proposes the application of a domain-specific language (DSL) to automatic component composition, testing and fault-prediction. The DSL ISinherently based on a domain-model which should aid users of the system m knowing how the system is structured and what responsibilities the system fulfils. The DSL structure proposed in this thesis uses a type system and grammar hence enabling the early detection of syntactically incorrect system usage. Each DSL construct's behaviour can also be defined in a testing DSL, described here as DSL-test. This can take the form of input and output parameters, which should suffice for specifying stateless components, or may necessitate the use of a special method call, described here as a White-Box Test (WBT), which allows the external observer to view the abstract state of a component. Each DSL-construct can be mapped to its implementing components i.e. the component, or amalgamation of components, that implement(s) the behaviour as prescribed by the DSL-construct. User-requirements are described using the DS Land appropriate implementing components (if sufficient exist) are automatically located and integrated. That is to say, given a requirement described in terms of the DSL and sufficient components, the architecture (which was named Hydra) will be able to generate an executable which should behave as desired. The DSL-construct behaviour description language (DSL-test) is designed in such a way that it can be translated into a computer programming language, and so code can be inserted between the system automatically to verify that the implementing component is acting in a way consistent with the model of its expected behaviour. Upon detection of an error, the system examines available data (i.e. where the error occurred, what sort of error was it, and what was the structure of the executable), to attempt to predict the location of the fault and, where possible, make remedialaction. A number of case studies have been investigated and it was found that, if applied to the appropriate problem domain, the approach proposed in this thesis shows promise in terms of full automation and integration of black-box or grey-box software. However, further work is required before it can be claimed that this approach should be used in real scale systems

    Engineering Automation for Reliable Software Interim Progress Report (10/01/2000 - 09/30/2001)

    Get PDF
    Prepared for: U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211The objective of our effort is to develop a scientific basis for producing reliable software that is also flexible and cost effective for the DoD distributed software domain. This objective addresses the long term goals of increasing the quality of service provided by complex systems while reducing development risks, costs, and time. Our work focuses on "wrap and glue" technology based on a domain specific distributed prototype model. The key to making the proposed approach reliable, flexible, and cost-effective is the automatic generation of glue and wrappers based on a designer's specification. The "wrap and glue" approach allows system designers to concentrate on the difficult interoperability problems and defines solutions in terms of deeper and more difficult interoperability issues, while freeing designers from implementation details. Specific research areas for the proposed effort include technology enabling rapid prototyping, inference for design checking, automatic program generation, distributed real-time scheduling, wrapper and glue technology, and reliability assessment and improvement. The proposed technology will be integrated with past research results to enable a quantum leap forward in the state of the art for rapid prototyping.U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-22110473-MA-SPApproved for public release; distribution is unlimited

    Integrating modern business applications with objectified legacy systems

    Get PDF
    • …
    corecore