2,973 research outputs found

    Formal Attributes Traceability in Modular Language Development Frameworks

    Get PDF
    AbstractModularization and component reuse are concepts that can speed up the design and implementation of domain specific languages. Several modular development frameworks have been developed that rely on attributes to share information among components. Unfortunately, modularization also fosters development in isolation and attributes could be undefined or used inconsistently due to a lack of coordination. This work presents 1) a type system that permits to trace attributes and statically validate the composition against attributes lack or misuse and 2) a correct and complete type inference algorithm for this type system. The type system and inference are based on the Neverlang development framework but it is also discussed how it can be used with different frameworks

    Challenges for Model-Driven Development of Strategically Aligned Information Systems

    Full text link
    [EN] Model-Driven Development (MDD) has been proposed as an alternative to the traditional development of information systems, given its ability to integrate different stakeholders into the information system engineering process. Currently, longtime researched MDD methods and modern no-code and low-code platforms support the generation of the working code of the information system and services. However, in today's continuously changing environment, organisations need to align the information systems and services with the business structure, strategy, and processes they support. This article shows the design challenges for integrating business strategy information into a model-driven development method. We applied a set of mechanism experiments on an MDD method composed of three modelling frameworks with demonstrated semantic consistency, that covers the organisational, business process, and information system levels to identify information loss and transformation coverage issues that prevent the generation of information systems and services that are strategically aligned. The challenges were discussed with experts, confirming the relevance of avoiding the overlapping between the strategic and business process concepts, providing organisational-level constructs to express strategic ends and means, and considering the organisational structure in the modular design of business process and information systems and services.This work was supported in part by the Spanish State Research Agency and the Generalitat Valenciana under Project MICIN/AEI/10.13039/501100011033, Project GV/2021/072, and Project INNEST/2021/57 by Agencia Valenciana de Innovacion (AVI); in part by the European Regional Development Fund (ERDF), the European Union Next Generation, and Plan de Recuperacion, Transformacion y Resiliencia (PRTR); and in part by the National Agency for Research and Development (ANID)/Scholarship Program/Doctorado Becas Chile under Grant 2020-72210494.Noel-Lopez, R.; Panach, JI.; Pastor LĂłpez, O. (2022). Challenges for Model-Driven Development of Strategically Aligned Information Systems. IEEE Access. 10:38237-38253. https://doi.org/10.1109/ACCESS.2022.316222538237382531

    Evolution of security engineering artifacts: a state of the art survey

    Get PDF
    Security is an important quality aspect of modern open software systems. However, it is challenging to keep such systems secure because of evolution. Security evolution can only be managed adequately if it is considered for all artifacts throughout the software development lifecycle. This article provides state of the art on the evolution of security engineering artifacts. The article covers the state of the art on evolution of security requirements, security architectures, secure code, security tests, security models, and security risks as well as security monitoring. For each of these artifacts the authors give an overview of evolution and security aspects and discuss the state of the art on its security evolution in detail. Based on this comprehensive survey, they summarize key issues and discuss directions of future research

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    A taxonomy of asymmetric requirements aspects

    Get PDF
    The early aspects community has received increasing attention among researchers and practitioners, and has grown a set of meaningful terminology and concepts in recent years, including the notion of requirements aspects. Aspects at the requirements level present stakeholder concerns that crosscut the problem domain, with the potential for a broad impact on questions of scoping, prioritization, and architectural design. Although many existing requirements engineering approaches advocate and advertise an integral support of early aspects analysis, one challenge is that the notion of a requirements aspect is not yet well established to efficaciously serve the community. Instead of defining the term once and for all in a normally arduous and unproductive conceptual unification stage, we present a preliminary taxonomy based on the literature survey to show the different features of an asymmetric requirements aspect. Existing approaches that handle requirements aspects are compared and classified according to the proposed taxonomy. In addition,we study crosscutting security requirements to exemplify the taxonomy's use, substantiate its value, and explore its future directions

    MODEL DRIVEN SOFTWARE PRODUCT LINE ENGINEERING: SYSTEM VARIABILITY VIEW AND PROCESS IMPLICATIONS

    Full text link
    La Ingeniería de Líneas de Productos Software -Software Product Line Engineerings (SPLEs) en inglés- es una técnica de desarrollo de software que busca aplicar los principios de la fabricación industrial para la obtención de aplicaciones informáticas: esto es, una Línea de productos Software -Software Product Line (SPL)- se emplea para producir una familia de productos con características comunes, cuyos miembros, sin embargo, pueden tener características diferenciales. Identificar a priori estas características comunes y diferenciales permite maximizar la reutilización, reduciendo el tiempo y el coste del desarrollo. Describir estas relaciones con la suficiente expresividad se vuelve un aspecto fundamental para conseguir el éxito. La Ingeniería Dirigida por Modelos -Model Driven Engineering (MDE) en inglés- se ha revelado en los últimos años como un paradigma que permite tratar con artefactos software con un alto nivel de abstracción de forma efectiva. Gracias a ello, las SPLs puede aprovecharse en granmedida de los estándares y herramientas que han surgido dentro de la comunidad de MDE. No obstante, aún no se ha conseguido una buena integración entre SPLE y MDE, y como consecuencia, los mecanismos para la gestión de la variabilidad no son suficientemente expresivos. De esta manera, no es posible integrar la variabilidad de forma eficiente en procesos complejos de desarrollo de software donde las diferentes vistas de un sistema, las transformaciones de modelos y la generación de código juegan un papel fundamental. Esta tesis presenta MULTIPLE, un marco de trabajo y una herramienta que persiguen integrar de forma precisa y eficiente los mecanismos de gestión de variabilidad propios de las SPLs dentro de los procesos de MDE. MULTIPLE proporciona lenguajes específicos de dominio para especificar diferentes vistas de los sistemas software. Entre ellas se hace especial hincapié en la vista de variabilidad ya que es determinante para la especificación de SPLs.Gómez Llana, A. (2012). MODEL DRIVEN SOFTWARE PRODUCT LINE ENGINEERING: SYSTEM VARIABILITY VIEW AND PROCESS IMPLICATIONS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15075Palanci

    Relational oriented systems engineering framework for flight training

    Get PDF
    The integration of systems of systems (SoS) associated with a flight training mission directly reflects the problem of developing a system engineering process for the design of live, virtual and constructive (LVC) experiments. Due to the complexity and disparity of the technology in a flight training SoS (FTSoS), modeling and analysis of architecture is becoming increasingly important. Relational Oriented Systems Engineering (ROSE) methodology is used to develop a framework for simulation and analysis of a navigational SoS for a typical aircraft. The framework can be used for both the prescription of navigation systems entering and exiting the SoS and for the analysis of pilot behavior as navigation quality of service (QoS) changes. ROSE offers a novel approach to developing a model-based systems engineering (MBSE) process for simulation and analysis of a complex SoS problem

    A Property-Driven Approach to Formal Verification of Process Models

    Get PDF
    Enterprise Information Systems, 9th International Conference, ICEIS 2007, Funchal, Madeira, June 12-16, 2007, Revised Selected PapersInternational audienceMore and more, models, through Domain Specific Languages (DSL), tend to be the solution to define complex systems. Expressing properties specific to these metamodels, and checking them, appear as an urgent need. Until now, the only complete industrial solutions that are available consider structural properties such as the ones that could be expressed in OCL. There are although some attempts on behavioural properties for DSL. This paper addresses a method to specify and then check temporal properties over models. The case study is SimplePDL, a process metamodel. We propose a way to use a temporal extension of OCL, TOCL, to express properties. We specify a models transformation to Petri Nets and LTL formulae for both the process model and its associated temporal properties. We check these properties using a model checker and enrich the model with the analysis results. This work is a first step towards a generic framework to specify and effectively check temporal properties over arbitrary models

    Understanding the Elements of Executable Architectures Through a Multi-Dimensional Analysis Framework

    Get PDF
    The objective of this dissertation study is to conduct a holistic investigation into the elements of executable architectures. Current research in the field of Executable Architectures has provided valuable solution-specific demonstrations and has also shown the value derived from such an endeavor. However, a common theory underlying their applications has been missing. This dissertation develops and explores a method for holistically developing an Executable Architecture Specification (EAS), i.e., a meta-model containing both semantic and syntactic information, using a conceptual framework for guiding data coding, analysis, and validation. Utilization of this method resulted in the description of the elements of executable architecture in terms of a set of nine information interrogatives: an executable architecture information ontology. Once the detail-rich EAS was constructed with this ontology, it became possible to define the potential elements of executable architecture through an intermediate level meta-model. The intermediate level meta-model was further refined into an interrogative level meta-model using only the nine information interrogatives, at a very high level of abstraction
    • …
    corecore